
Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Lei Han 1 Yiheng Huang 1 Tong Zhang 1

Abstract
This paper proposes a method for multi-class clas-
sification problems, where the number of classes
K is large. The method, referred to as Candidates
vs. Noises Estimation (CANE), selects a small
subset of candidate classes and samples the re-
maining classes. We show that CANE is always
consistent and computationally efficient. More-
over, the resulting estimator has low statistical
variance approaching that of the maximum likeli-
hood estimator, when the observed label belongs
to the selected candidates with high probability.
In practice, we use a tree structure with leaves as
classes to promote fast beam search for candidate
selection. We further apply the CANE method
to estimate word probabilities in learning large
neural language models. Extensive experimental
results show that CANE achieves better prediction
accuracy over the Noise-Contrastive Estimation
(NCE), its variants and a number of the state-of-
the-art tree classifiers, while it gains significant
speedup compared to standard O(K) methods.

1. Introduction
In practice one often encounters multi-class classification
problem with a large number of classes. For example, ap-
plications in image classification (Russakovsky et al., 2015)
and language modeling (Mikolov et al., 2010) usually have
tens to hundreds of thousands of classes. Under such cases,
training the standard softmax logistic or one-against-all mod-
els becomes impractical.

One promising way to handle the large class size is to use
sampling. In language models, a commonly adopted tech-
nique is Noise-Contrastive Estimation (NCE) (Gutmann
& Hyvärinen, 2012). This method is originally proposed

1Tencent AI Lab, Shenzhen, China. Correspondence
to: Lei Han <lxhan@tencent.com>, Yiheng Huang <arnold-
huang@tencent.com>, Tong Zhang <tongzhang@tongzhang-
ml.org>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

for estimating probability densities and has been applied
to various language modeling situations, such as learning
word embeddings, context generation and neural machine
translation (Mnih & Teh, 2012; Mnih & Kavukcuoglu, 2013;
Vaswani et al., 2013; Sordoni et al., 2015). NCE reduces
the problem of multi-class classification to binary classifi-
cation problem, which discriminates between a target class
distribution and a noise distribution and a few noise classes
are sampled as a representation of the entire noise space. In
general, the noise distribution is given a priori. For example,
a power-raised unigram distribution has been shown to be
effective in language models (Mikolov et al., 2013; Ji et al.,
2015; Mnih & Teh, 2012). Recently, some variants of NCE
have been proposed. The Negative Sampling (Mikolov et al.,
2013) is a simplified version of NCE that ignores the nu-
merical probabilities in the distributions and discriminates
between only the target class and noise samples; the One
vs. Each (Titsias, 2016) solves a very similar problem moti-
vated by bounding the softmax logistic log-likelihood. Two
other variants, BlackOut (Ji et al., 2015) and complementary
sum sampling (Botev et al., 2017), employ parametric forms
of the noise distribution and use sampled noises to approx-
imate the normalization factor. In summary, NCE and its
variants use (only) the observed class versus the noises; by
sampling the noises, these methods avoid the costly com-
putation of the normalization factor to achieve fast training
speed. In this paper, we will generalize the idea by using
a subset of classes (which can be automatically learned),
called candidate classes, against the remaining noise classes.
Compared to NCE, this approach can significantly improve
the statistical efficiency when the true class belongs to the
candidate classes with high probability.

Another type of popular methods for large class space is the
tree structured classifier (Beygelzimer et al., 2009; Bengio
et al., 2010; Deng et al., 2011; Choromanska & Langford,
2015; Daume III et al., 2017; Jernite et al., 2017). In these
methods, a tree structure is defined over the classes which
are treated as leaves. Each internal node of the tree is as-
signed with a local classifier, routing the examples to one
of its descendants. Decisions are made from the root until
reaching a leaf. Then, the multi-class classification problem
is reduced to solving a number of small local models defined
by a tree, which typically admits a logarithmic complexity
on the total number of classes. Generally, tree classifiers

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

gain training and prediction speed while suffering a loss
of accuracy. The performance of tree classifier may rely
heavily on the quality of the tree (Mnih & Hinton, 2009).
Earlier approaches use fixed tree, such as the Filter Tree
(Beygelzimer et al., 2009) and the Hierarchical Softmax
(HSM) (Morin & Bengio, 2005). Recent methods are able to
adjust the tree and learn the local classifiers simultaneously,
such as the LOMTree (Choromanska & Langford, 2015)
and Recall Tree (Daume III et al., 2017). Our approach is
complementary to these tree classifiers, because we study
the orthogonal issue of consistent class sampling, which in
principle can be combined with many of these tree methods.
In fact, a tree structure will be used in our approach to select
a small subset of candidate classes. Since we focus on the
class sampling aspect, we do not necessarily employ the
best tree construction method in our experiments.

In this paper, we propose a method to efficiently deal with
the large class problem by paying attention to a small subset
of candidate classes instead of the entire class space. Given
a data point x (without observing y), we select a small
number of competitive candidates as a set Cx. Then, we
sample the remaining classes, which are treated as noises,
to represent the entire noise space in the large normaliza-
tion factor. The estimation is referred to as Candidates vs.
Noises Estimation (CANE). We show that CANE is consis-
tent and its computation using stochastic gradient method
is independent of the class size K. Moreover, the statistical
variance of the CANE estimator can approach that of the
maximum likelihood estimator (MLE) of the softmax logis-
tic regression when Cx can cover the target class y with high
probability. This statistical efficiency is a key advantage of
CANE over NCE, and its effect can be observed in practice.

We then describe two concrete algorithms: the first one is
a generic stochastic optimization procedure for CANE; the
second one employs a tree structure with leaves as classes
to enable fast beam search for candidate selection. We
also apply CANE to solve the word probability estimation
problem in neural language modeling. Experimental results
conducted on both classification and neural language model-
ing problems show that CANE achieves significant speedup
compared to the standard softmax logistic regression. More-
over, it achieves superior performance over NCE, its vari-
ants, and a number of the state-of-the-art tree classifiers.

2. Candidates vs. Noises Estimation
Consider a K-class classification problem (K is large) with
n training examples (xi, yi)|ni=1, where xi is from an in-
put space X and yi ∈ {1, · · · ,K}. The softmax logistic
regression solves

max
θ

1

n

n∑
i=1

K∑
k=1

I(yi = k) log
esk(xi,θ)∑K

k′=1 e
sk′ (xi,θ)

, (1)

where sk(x,θ) for k = 1, · · · ,K is a model parameterized
by θ. Solving Eq. (1) requires computing a score for every
class and the summation in the normalization factor, which
is very expensive when K is large.

Generally speaking, given x, only a small number of classes
in the entire class space might be competitive to the true
class. Therefore, we propose to find a small subset of classes
as a candidate set Cx ⊂ {1, · · · ,K} and treat the classes
outside Cx as noises, so that we can focus on the small
set Cx instead of the entire K classes. We will discuss
one way to choose Cx in Section 4. Denote the remaining
K − |Cx| noises as a set Nx, so Nx is the complementary
set of Cx. We propose to sample some noise class j ∈ Nx
to represent the entire Nx. That is, we replace the partial
summation

∑
j∈Nx e

sj(x,θ) in the denominator of Eq. (1)
by esj(x,θ)/qx(j) using some sampled class j with an arbi-
trary sampling probability qx(j), where qx(j) ∈ (0, 1) and∑
j∈Nx qx(j) = 1. Thus, the denominator

∑K
k′=1 e

sk′ (x,θ)

will be approximated as
∑
k′∈Cx e

sk′ (x,θ) + esj(x,θ)/qx(j).
Given example (x, y) and its candidate set Cx, if y ∈ Cx,
then for some sampled noise class j, we will focus on maxi-
mizing the approximated probability

esy(x,θ)∑
k′∈Cx e

sk′ (x,θ) + esj(x,θ)/qx(j)
; (2)

otherwise, if y 6∈ Cx, we maximize

esy(x,θ)∑
k′∈Cx e

sk′ (x,θ) + esy(x,θ)/qx(y)
(3)

alternatively, where y is treated as the sampled noise in
place. Now, with Eqs. (2) and (3), in expectation, we will
need to solve the following objective:

maximize R(θ) =

Ex

[∑
k∈Cx

p(y = k|x)
∑

j∈Nx

qx(j) log
esk(x,θ)∑

k′∈Cx esk′ (x,θ)+ e
sj(x,θ)

qx(j)

+
∑

k∈Nx

p(y = k|x) log
esk(x,θ)∑

k′∈Cx esk′ (x,θ) + esk(x,θ)

qx(k)

]
, (4)

and empirically, we will need to solve

maximize R̂n(θ) =

1

n

n∑
i=1

[
I(yi ∈ Cxi)

∑
j∈Nxi

qxi (j) log
esyi (xi,θ)∑

k′∈Cxi
esk′ (xi,θ)+ e

sj(xi,θ)

qxi (j)

+ I(yi /∈ Cxi) log
esyi (xi,θ)∑

k′∈Cxi
esk′ (xi,θ) + e

syi
(xi,θ)

qxi (yi)

]
. (5)

Eq. (5) consists of two summations over both the data points
and the classes in the noise set Nx. Therefore, we can em-
ploy a ‘doubly’ stochastic gradient optimization method by

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

sampling both data points i ∈ {1, . . . , n} and noise classes
j ∈ Nxi . It is not difficult to check that each stochastic gra-
dient is bounded under reasonable conditions, which means
that the computational cost for solving (5) using stochastic
gradient is independent of the class number K. Since we
only choose a small number of candidates in Cx, the com-
putation for each stochastic gradient in Eq. (5) is efficient.
The above method is referred to as Candidates vs. Noises
Estimation (CANE).

3. Properties
In this section, we investigate the statistical properties of
CANE. The parameter space of the softmax logistic model
in Eq. (1) has redundancy, observing that adding any func-
tion h(x) to sk(x,θ) for k = 1, · · · ,K will not change
the objective. Similar situation happens for Eqs. (4) and
(5). To avoid this redundancy, one can add some constraints
on the K scores or simply fix one of them as zero, e.g.,
let sK(x,θ) = 0. To facilitate the analysis, we will fix
sK(x,θ) = 0 and consider Cx ∪ Nx = {1, · · · ,K − 1}
within this section. First, we have the following result.

Theorem 1 (Infinity-Sample Consistency). By viewing the
objective R as a function of {s1, · · · , sK−1}, R achieves
its maximum if and only if sk = log p(y=k|x)

p(y=K|x) for k =

1, · · · ,K − 1.

In Theorem 1, the global optima is exactly the log-odds func-
tion with class K as the reference class. Now, considering
the parametric form sk(x,θ), there exists a true parameter
θ∗ so that sk(x,θ∗) = log p(y=k|x)

p(y=K|x) if the model sk(x,θ)

is correctly specified. The following theorem shows that the
CANE estimator θ̂ = arg maxθ R̂n(θ) is consistent with
the true parameter θ∗.

Theorem 2 (Finite-Sample Asymptotic Consistency). Given
x, denote Cx as {i1, · · · , i|Cx|} andNx as {j1, · · · , j|Nx|}.
Suppose that the parameter space is compact and ∀θ 6=
θ∗ such that PX (sk(x,θ) 6= sk(x,θ∗)) > 0 for x ∼
X , k 6= K. Assume ‖∇θsk(x,θ)‖, ‖∇2

θsk(x,θ)‖ and
‖∇3

θsk(x,θ)‖ for k 6= K are bounded under some norm
‖ · ‖ defined on the parameter space of θ. Then, as n→∞,
the estimator θ̂ converges to θ∗.

The above theorem shows that similar to the maximum
likelihood estimator of Eq. (1), the CANE estimator in
Eq. (5) is also consistent. Next, we have the asymptotic
normality for θ̂ as follows.

Theorem 3 (Asymptotic Normality). Under the same as-
sumption used in Theorem 2, as n → ∞,

√
n(θ̂ − θ∗)

follows the asymptotic normal distribution:

√
n(θ̂ − θ∗) d−→ N(0, [Ex∇M∇>]−1), (6)

where

M =
∑

j∈Nx

qx(j)

[
diag (uj)−

1

p(K,x) +
∑

k∈Cx p(k,x) +
p(j,x)
qx(j)

uju
>
j

]
,

uj =
(
p(i1,x), · · · , p(i|Cx|,x)︸ ︷︷ ︸

The candidate part

, 0, · · · , p(j,x)/qx(j), · · · , 0︸ ︷︷ ︸
The noise part

)>
,

for j = j1, · · · , j|Nx|,

∇ = diag
([
∇θsi1 (x,θ), · · · ,∇θsi|Cx| (x,θ),∇θsj1 (x,θ),

· · · ,∇θsj|Nx| (x,θ)
]>)

.

Theorem 3 shows that the CANE method has a statistical
variance of [Ex∇M∇>]−1. As we will see in the next
corollary, if one can successfully choose the candidate set
Cx so that it covers the observed label y with high probabil-
ity, then the difference between the statistical variance of
CANE and that of Eq. (1) is small. Therefore, choosing a
good candidate set can be important for practical applica-
tions. Moreover, under standard conditions, the computation
of CANE using stochastic gradient is independent of the
class size K because the variance of stochastic gradient is
bounded.
Corollary 1 (Low Statistical Variance). The variance of
the maximum likelihood estimator for the softmax logistic
regression in Eq. (1) has the form [Ex∇Mmle∇>]−1. If∑
k∈Cx∪{K} p(k,x) → 1, i.e., the probability that Cx ∪

{K} covers the observed class label y approaches 1, then

[Ex∇M∇>]−1 → [Ex∇Mmle∇>]−1.

4. Algorithm
In this section, we propose two algorithms. The first one
is a general optimization procedure for CANE. The second
implementation provides an efficient way to select a com-
petitive set Cx using a tree structure defined on the classes.

4.1. A General Optimization Algorithm

Eq. (5) suggests an efficient algorithm using a ‘doubly’
stochastic gradient descend (SGD) method by sampling
both the data points and classes. That is, by sampling a data
point (x, y), we find the candidate set Cx ⊂ {1, · · · ,K}.
If y ∈ Cx, we sample Nn noises from Nx according to qx
and denote the selected noises as a set Tx (|Tx| = Nn). We
then optimize

1

|Tx|
∑
j∈Tx

log
esy(x,θ)∑

k′∈Cx e
sk′ (x,θ) + esj(x,θ)/qx(j)

,

with gradient∇θR̂ given by Eq. (7). Otherwise, if y 6∈ Cx,
we optimize

log
esy(x,θ)∑

k′∈Cx e
sk′ (x,θ) + esy(x,θ)/qx(y)

,

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Algorithm 1 A general optimization procedure for CANE.
1: Input: K, (xi, yi)|ni=1, number of candidates Nc = |Cx|,

number of sampled noises Nn = |Tx|, sampling strategy q
and learning rate η.

2: Output: θ̂.

3: Initialize θ;
4: for every sampled example do
5: Receive example (x, y);
6: Find the candidate set Cx;
7: if y ∈ Cx then
8: Sample Nn noises outside Cx according to q and denote

the selected noise set as Tx;
9: θ ← θ + η∇θR̂ with∇θR̂ given by

∇θsy(x,θ)− 1

|Tx|
∑
j∈Tx

(7)

∑k′∈Cx e
sk′ (x,θ)∇θsk′(x,θ) + e

sj(x,θ)

qx(j)
∇θsj(x,θ)∑

k′∈Cx e
sk′ (x,θ) + e

sj(x,θ)

qx(j)

 ;

10: else
11: θ ← θ + η∇θR̂ with∇θR̂ given by

∇θsy(x,θ)−∑
k′∈Cx e

sk′ (x,θ)∇θsk′(x,θ) + esy(x,θ)

qx(y)
∇θsy(x,θ)∑

k′∈Cx e
sk′ (x,θ) + esy(x,θ)

qx(y)

; (8)

12: end if
13: end for

with gradient∇θR̂ given by Eq. (8). This general procedure
is provided in Algorithm 1. Algorithm 1 has a complexity
of O(Nc +Nn) (where Nc = |Cx|), which is independent
of the class size K. In step 6, any method can be used to
select Cx.

4.2. Beam Tree Algorithm

In the second algorithm, we provide an efficient way to
find a competitive Cx. An attractive strategy is to use a
tree defined on the classes, because one can perform fast
heuristic search algorithms based on a tree structure to prune
the uncompetitive classes. Indeed, any structure, e.g., graph
or groups, can be used alternatively as long as the structure
allows to efficiently prune uncompetitive classes. We will
use tree structure for candidate selection in this paper.

Given a tree structure defined on the K classes, the model
sk(x,θ) is interpreted as a tree model illustrated in Fig. 1.
For simplicity, Fig. 1 uses a binary tree over K = 8 labels
as example while any tree structure can be used for select-
ing Cx. In the example, circles denote internal nodes and
squares indicate classes. The parameters are kept in the
edges and denoted as θ(o,c), where o indicates an internal
node and c is the index of the c-th child of node o. There-
fore, a pair (o, c) represents an edge from node o to its c-th
child. The dashed circles indicate that we do not keep any

Figure 1. Illustration of the tree model. Suppose an example (x, 2)
is arriving, and two candidate classes 1 and 2 are selected by beam
search. The class 6 is sampled as noise.

parameters in the internal nodes. Now, define sk(x,θ) as

sk(x,θ) = gψ(x) ·
∑

(o,c)∈Pk

θ(o,c), (9)

where gψ(x) is a function parameterized by ψ and it maps
the input x ∼ X to a representation gψ(x) ∈ Rdr for some
dr. For example, in image classification, a good choice of
the representation gψ(x) of the raw pixels x is usually a
deep neural network. Pk denotes the path from the root to
the class k. Eq. (9) implies that the score of an example
belonging to a class is calculated by summing up the scores
along the corresponding path. Now, in Fig. 1, suppose
that we are given an example (x, y) with class y = 2 (blue).
Using beam search, we find two candidates with high scores,
i.e., class 1 (green) and class 2. Then, we let Cx = {1, 2}.
In this case, we have y ∈ Cx, so we need to sample noises.
Suppose we sample one class 6 (orange). According to Eq.
(7), the parameters along the corresponding paths (red) will
be updated.

Formally, given example (x, y), if y ∈ Cx, we sample noises
as a set Tx. Then for (o, c) ∈ PCx∪Tx , where PCx∪Tx =
∪k∈Cx∪TxPk, the gradient with respect to θ(o,c) is

∂R̂

∂θ(o,c)
=

1

|Tx|
∑
j∈Tx

[
I ((o, c) ∈ Py)− (10)

∑
k′∈Cx I((o, c) ∈ Pk′)e

sk′ (x,θ) + I((o, c) ∈ Pj)
e
sj(x,θ)

qx(j)∑
k′∈Cx esk′ (x,θ) + e

sj(x,θ)

qx(j)

]
gψ(x).

Note that an edge may be included in multiple selected
paths. For example, P1 and P2 share edges (1, 1) and (2, 1)
in Fig. 1. The case of y 6∈ Cx can be illustrated similarly.
The gradient with respect to θ(o,c) when y 6∈ Cx is

∂R̂

∂θ(o,c)
=

[
I ((o, c) ∈ Py)− (11)

∑
k′∈Cx I((o, c) ∈ Pk′)e

sk′ (x,θ) + I((o, c) ∈ Py)
esy(x,θ)

qx(y)∑
k′∈Cx esk′ (x,θ) + esy(x,θ)

qx(y)

]
gψ(x).

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Algorithm 2 The Beam Tree Algorithm.
1: Input: K, (xi, yi)|ni=1, representation function gψ(x), num-

ber of candidates Nc = |Cx|, number of sampled noises
Nn = |Tx|, sampling strategy q and learning rate η.

2: Output: θ̂.

3: Construct a tree on the K classes;
4: Initialize θ;
5: for every sampled example do
6: Receive example (x, y);
7: Given x, use beam search to find the Nc classes with high

scores to compose Cx;
8: if y ∈ Cx then
9: Sample Nn noises outside Cx according to q and denote

the selected noise set as Tx;
10: Find the paths with respect to the classes in Cx ∪ Tx;
11: else
12: Find the paths with respect to the classes in Cx ∪ {y};
13: end if
14: Sum up the scores along each selected path for the corre-

sponding class;
15: θ(o,c) ← θ(o,c) + η ∂R̂

∂θ(o,c)
for each (o, c) included in the

selected paths according to Eqs. (10) and (11);
16: ψ ← ψ + η ∂R̂

∂g
∂g
∂ψ

; // if g is parameterized.
17: end for

The gradients in Eqs. (10) and (11) enjoy the following
property.

Proposition 1. At each iteration of Algorithm 2, if an edge
(o, c) is included in every selected path, then θ(o,c) does not
need to be updated.

The proof of Proposition 1 is straightforward that if (o, c)
belongs to every selected path, then the gradients in Eqs.
(10) and (11) are 0. The above property allows a fast detec-
tion of those parameters which do not need to be updated
in SGD and hence can save computations. In practice, the
number of shared edges is related to the tree structure.

Since we use beam search to choose the candidates in a
tree structure, the proposed algorithm is referred to as Beam
Tree, which is depicted in Algorithm 2. 1 For the tree con-
struction method in step 3, we can use some hierarchical
clustering based methods which will be detailed in the ex-
periments and supplementary material. In the algorithm, the
beam search needs O (Nc logbK) operations, where b is a
constant related to the tree structure, e.g., binary tree for
b = 2. The parameter updating needsO((Nc+Nn) logbK)
operations. Therefore, Algorithm 2 has a complexity of
O((2Nc +Nn) logbK) which is logarithmic with respect
to K. The term logbK is from the tree structure used in this
specific candidate selection method, so it does not conflict
with the complexity of the general Algorithm 1, which is
independent of K. Another advantage of the Beam Tree

1The beam search procedure in step 7 is provided in the sup-
plementary material.

algorithm is that it allows fast predictions and can natu-
rally output the top-J predictions using beam search. The
prediction time has an order of O (J logbK) for the top-J
predictions.

5. Application to Neural Language Modeling
In this section, we apply the CANE method to neural lan-
guage modeling which solves a probability density estima-
tion problem. In neural language models, the conditional
probability distribution of the target word w given context
h is defined as

Ph(w) =
esw(h,θ)∑

w′∈V e
sw′ (h,θ)

,

where sw(h,θ) is the scoring function with parameter θ. A
wordw in the context hwill be represented by an embedding
vector uw ∈ Rd with embedding size d. Given context h,
the model computes the score for the target word w as

sw(h,θ) = gϕ(uh)vw,

where θ = {u,v,ϕ}, gϕ(·) is a representation function
(parameterized by ϕ) of the embeddings in the context h,
e.g., a LSTM modular (Hochreiter & Schmidhuber, 1997),
and vw is the weight parameter for the target word w. Both
the word embedding u and weight parameter v need to be
estimated. In language models, the vocabulary size |V| is
usually very large and the computation of the normalization
factor is expensive. Therefore, instead of estimating the ex-
act probability distribution Ph(w), sampling methods such
as NCE and its variants (Mnih & Kavukcuoglu, 2013; Ji
et al., 2015) are typically adopted to approximate Ph(w).

In order to apply the CANE method, we need to select the
candidates given any context h. For multi-class classifica-
tion problem, we have devised a Beam Tree algorithm in
Algorithm 2 that uses a tree structure to select candidates,
and the tree can be obtained by some hierarchical cluster-
ing methods over x before learning. However, different
from the classification problem, the word embeddings in
the language model are not known before training, and thus
obtaining a hierarchical structure based on the word embed-
dings is not practical. In this paper, we construct a simple
tree with only one layer under the root, where the layer con-
tains N subsets formed by splitting the words according to
their frequencies. At each iteration of Algorithm 2, we route
the example by selecting the subset with the largest score (in
place of beam search) and then sample the candidates from
the subset according to some distribution. For the noises
in CANE, we directly sample words out of the candidate
set according to q. Other methods can be used to select the
candidates alternatively, for example, one can choose candi-
dates conditioned on the context h using a lightly pre-trained
N-gram model.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

6. Related Algorithms
We provide a discussion comparing CANE with the existing
techniques for solving the large class space problem. Given
(x, y), NCE and its variants (Gutmann & Hyvärinen, 2012;
Mnih & Kavukcuoglu, 2013; Mikolov et al., 2013; Ji et al.,
2015; Titsias, 2016; Botev et al., 2017) use the observed
class y as the only ‘candidate’, while CANE chooses a sub-
set of candidates Cx according to x. NCE assumes the entire
noise distribution Pnoise(y) is known (e.g., a power-raised
unigram distribution). However, in general multi-class clas-
sification problems, when the knowledge of the noise distri-
bution is absent, NCE may have unstable estimations using
an inaccurate noise distribution. CANE is developed for
general multi-class classification problems and does not rely
on a known noise distribution. Instead, CANE focuses on a
small candidate set Cx. Once the true class label is contained
in Cx with high probability, CANE will have low statistical
variance. The variants of NCE (Mikolov et al., 2013; Ji
et al., 2015; Titsias, 2016; Botev et al., 2017) also sample
one or multiple noises to replace the normalization factor
while according theoretical guarantees on the consistency
and variance are rarely discussed. NCE and its variants can
not speed up prediction while the Beam Tree algorithm can
reduce the prediction complexity to O(logK).

The Beam Tree algorithm is related to some tree classifiers,
while CANE is a general procedure and we only use tree
structure to select candidates. The Beam Tree method itself
is also different from existing tree classifiers. Most of the
state-of-the-art tree classifiers, e.g., LOMTree (Choroman-
ska & Langford, 2015) and Recall Tree (Daume III et al.,
2017), store local classifiers in their internal nodes, and
route examples through the root until reaching the leaf. Dif-
ferently, the Beam Tree algorithm shown in Fig. 1 does not
maintain local classifiers, and it only uses the tree structure
to perform global heuristic search for candidate selection.
We will compare our approach to some state-of-the-art tree
classifiers in the experiments.

7. Experiments
We evaluate the CANE method in various applications in
this section, including both multi-class classification prob-
lems and neural language modeling. We compare CANE
with NCE, its variants and some state-of-the-art tree classi-
fiers that have been used for large class space problems. The
competitors include the standard softmax, the NCE (Mnih
& Kavukcuoglu, 2013; Mnih & Teh, 2012), the BlackOut
(Ji et al., 2015), the hierarchical softmax (HSM) (Morin &
Bengio, 2005), the Filter Tree (Beygelzimer et al., 2009)
implemented in Vowpal-Wabbit (VW, a learning platform)2,

2https://github.com/JohnLangford/vowpal_
wabbit/wiki

the LOMTree (Choromanska & Langford, 2015) in VW and
the Recall Tree (Daume III et al., 2017) in VW.

7.1. Classification Problems

In this section, we consider four multi-class classification
problems, including the Sector3 dataset with 105 classes
(Chang & Lin, 2011), the ALOI4 dataset with 1000 classes
(Geusebroek et al., 2005), the ImageNet-20105 dataset with
1000 classes, and the ImageNet-10K5 dataset with 10K
classes (ImageNet Fall 2009 release). The data from Sec-
tor and ALOI is split into 90% training and 10% testing.
In ImageNet-2010, the training set contains 1.3M images
and we use the validation set containing 50K images as
the test set. The ImageNet-10K data contains 9M images
and we randomly split the data into two halves for train-
ing and testing by following the protocols in (Deng et al.,
2010; Sánchez & Perronnin, 2011; Le, 2013). For ImageNet-
2010 and ImageNet-10K datasets, similar to (Oquab et al.,
2014), we transfer the mid-level representations from the
pre-trained VGG-16 net (Simonyan & Zisserman, 2014) on
ImageNet 2012 data (Russakovsky et al., 2015) to our case.
Then, we concatenate CANE or other compared methods
above the partial VGG-16 net as the top layer. The param-
eters of the partial VGG-16 net are pre-trained6 and kept
fixed. Only the parameters in the top layer are trained on
the target datasets, i.e., ImageNet-2010 and ImageNet-10K.

We use b-nary tree for CANE and set b = 10 for all clas-
sification problems. We trade off |Cx| and |Tx| to see how
these parameters affect the learning performance. Different
configurations will be referred to as ‘CANE-(|Cx| vs. |Tx|)’.
We always let |Cx|+ |Tx| equal the number of noises used
by NCE and BlackOut, so that these methods will have the
same number of considered classes. We use ‘NCE-k’ and
‘BlackOut-k’ to denote the corresponding method with k
noises. Generally, a large |Cx|+ |Tx| and k will lower the
variance of CANE, NCE and BlackOut and improve their
performance, but this also increases the computation. We set
k = 10 for Sector and ALOI and k = 20 for ImageNet-2010
and ImageNet-10K. We uniformly sample noises in CANE.
For NCE and BlackOut, by following (Mnih & Teh, 2012;
Mnih & Kavukcuoglu, 2013; Ji et al., 2015; Botev et al.,
2017), we use the power-raised unigram distribution with
the power factor selected from {0, 0.1, 0.3, 0.5, 0.75, 1} to
sample the noises. However, when the classes are balanced
as in many cases of the classification datasets, this distri-
bution reduces to the uniform distribution. For the com-

3http://www.cs.utexas.edu/˜xrhuang/
PDSparse/

4http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/multiclass.html

5http://image-net.org
6http://www.robots.ox.ac.uk/˜vgg/

research/very_deep/

https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki
http://www.cs.utexas.edu/~xrhuang/PDSparse/
http://www.cs.utexas.edu/~xrhuang/PDSparse/
http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/ libsvmtools/datasets/multiclass.html
http://image-net.org
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Epoch
0 10 20 30 40 50

T
es

t a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

Softmax
CANE-9v1
CANE-5v5
CANE-1v9
BlackOut-10
NCE-10

(a) Sector

Epoch
0 10 20 30 40 50

T
es

t a
cc

ur
ac

y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Softmax
CANE-9v1
CANE-5v5
CANE-1v9
BlackOut-10
NCE-10

(b) ALOI

Epoch
0 10 20 30 40 50

T
es

t a
cc

ur
ac

y

0.55

0.6

0.65

Softmax
CANE-15v5
CANE-10v10
CANE-5v15
BlackOut-20
NCE-20

(c) ImgNet-2010

Epoch
0 5 10 15 20

T
es

t a
cc

ur
ac

y

0.14

0.16

0.18

0.2

0.22

0.24

0.26

CANE-15v5
CANE-10v10
CANE-5v15
BlackOut-20
NCE-20

(d) ImgNet-10K

Figure 2. Results of test accuracy vs. epoch on different classification datasets.

Table 1. Training / testing time of the sampling methods. Running Softmax and testing NCE and BlackOut on large datasets are time
consuming. We use multi-thread implementation for these methods and estimate the running time. ‘∼’ indicates the estimated time.

Data NCE-10 BlackOut-10 CANE-1v9 CANE-5v5 CANE-9v1 Softmax

Sector 0.4m / 0.8s 0.4m / 0.8s 1m / 0.1s 1.8m / 0.1s 2.3m / 0.2s 6.1m / 0.9s

ALOI 3m / 6s 3m / 6s 4m / 0.1s 7m / 0.3s 8m / 0.5s 28m / 7s

Data NCE-20 BlackOut-20 CANE-5v15 CANE-10v10 CANE-15v5 Softmax

ImgNet-2010 3.5h / 8m 3.5h / 8m 4h / 0.4m 5.8h / 0.7m 6.4h / 0.9m 96h / 8.7m

ImgNet-10K 13h / ∼5d 12h / ∼5d 20h / 1h 33h / 1.5h 39h / 2h ∼140d / ∼5d

Table 2. Accuracy and training / testing time of the tree classifiers.

Data HSM Filter Tree LOMTree Recall Tree

Sector 91.36% 84.67% 84.91% 86.89%

0.5m / 0.1s 0.4m / 0.4s 0.5m / 0.2s 0.7m / 0.2s

ALOI 65.69% 20.07% 82.70% 83.03%

1m / 0.4s 1m / 0.2s 3.3m / 1s 2.5m / 0.2s

ImgNet 47.68% 48.29% 49.87% 61.28%

2010 4.7h / 0.5m 6.8h / 0.1m 17.8h / 0.3m 32h / 0.5m

ImgNet 17.31% 4.49% 9.72% 22.74%

10K 14h / 1h 22h / 0.3h 23h / 0.3h 68h / 1.2h

pared tree classifiers, the HSM adopts the same tree used by
CANE, the Filter Tree generates a fixed tree itself in VW,
the LOMTree and Recall Tree use binary trees and they are
able to adjust the tree structure automatically.

All the methods use SGD with learning rate selected from
{0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1.0}. The Beam Tree
algorithm requires a tree structure and we use some tree
generated by a simple hierarchical clustering method on the
centers of the individual classes.7 We run all the methods 50
epochs on Sector, ALOI and ImageNet-2010 datasets and 20
epochs on ImageNet-10K to report the accuracy vs. epoch
curves. All the methods are implemented using a standard
CPU machine with quad-core Intel Core i5 processor.

Fig. 2 and Table 1 show the accuracy vs. epoch plots and

7The method is provided in the supplementary material.

the training / testing time for NCE, BlackOut, CANE and
Softmax. The tree classifiers in the VW platform require the
number of training epochs as input and do not take evalua-
tion directly after each epoch, so we report the final results
of the tree classifiers in Table 2. For ImageNet-10K data, the
Softmax method is very time consuming (even with multi-
thread implementation) and we do not report this result. As
we can observe, by fixing |Cx| + |Tx|, using more candi-
dates than noises in CANE will achieve better performance,
because a larger Cx will increase the chance to cover the tar-
get class y. The probability that the target class is included
in the selected candidate set on the test data is reported in
Table 3. On all the datasets, CANE with larger candidate
set achieves considerable improvement compared to other
methods in terms of accuracy. The speed of processing each
example of CANE is slightly slower than that of NCE and
BlackOut because of beam search, however, CANE shows
faster convergence to reach higher accuracy. Moreover, the
prediction time of CANE is much faster than those of NCE
and BlackOut. It is worth mentioning that CANE exceeds
some state-of-the-art results on the ImageNet-10K data, e.g.,
19.2% top-1 accuracy reported in (Le, 2013) and 21.9% top-
1 accuracy reported in (Mensink et al., 2013) which are con-
ducted fromO(K) methods; but it underperforms the recent
result 28.4% in (Huang et al., 2016). This is probably be-
cause the VGG-16 net works better than the neural network
structure used in (Le, 2013) and the distance-based method
in (Mensink et al., 2013), while the method in (Huang et al.,
2016) adopts a better feature embedding, which leads to
superior prediction performance on this dataset.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Table 3. The probability that the true label is included in the se-
lected candidate set on the test set, i.e., the top-|Cx| accuracy.

|Cx| Sector ALOI |Cx| ImgNet-2010 ImgNet-10K

1 68.89% 44.84% 5 76.59% 39.59%

5 96.57% 86.47% 10 87.29% 53.28%

9 97.92% 93.59% 15 91.17% 60.22%

7.2. Neural Language Modeling

In this experiment, we apply the CANE method to neural
language modeling. We test the methods on two bench-
mark corpora: the Penn TreeBank (PTB) (Mikolov et al.,
2010) and Gutenberg8 corpora. The Penn TreeBank dataset
contains 1M tokens and we choose the most frequent 12K
words appearing at least 5 times as the vocabulary. The
Gutenberg dataset contains 50M tokens and the most fre-
quent 116K words appearing at least 10 times are chosen as
the vocabulary. We set the embedding size as 256 and use
a LSTM model with 512 hidden states and 256 projection
size. The sequence length is fixed as 20 and the learning
rate is selected from {0.025, 0.05, 0.1, 0.2}.

The tree classifiers evaluated in multi-class classification
problems can not be directly applied to solve the language
modeling problem, so we omit their comparison and focus
on the evaluation of the sampling methods. We sample
40, 60 and 80 noises for NCE and Blackout respectively
and use power-raised unigram distribution with the power
factor selected from {0, 0.25, 0.5, 0.75, 1}. For CANE, we
adopt the one-layer tree structure discussed in Section 5 with
N = 6 subsets, split by averaging over the word frequencies.
We uniformly sample the candidates when reaching any
subset. For efficiency consideration, we respectively sample
40, 60 and 80 candidates plus one more uniform noise for
CANE. The experiments in this section are implemented on
a machine with NVIDIA Tesla M40 GPUs.

The test perplexities are shown in Fig. 3. As we can observe,
the CANE method always achieves faster convergence and
lower perplexities (approaching that of Softmax) compared
to NCE and Blackout under various settings. Generally,
when the number of selected candidates / noises decrease,
the test perplexities of all the methods increase on both
datasets, while the performance degradation of CANE is not
obvious. By using GPUs, all the methods can finish training
within a few minutes on the PTB dataset; for the Gutenberg
corpus, CANE and BlackOut have similar training time that
is around 5 hours on all the three settings, while NCE spends
around 6-8 hours on these tasks and Softmax uses 35 hours
to finish the training.

8www.gutenberg.org

Epoch
0 10 20 30

Pe
rp

le
xi

ty

0

100

200

300

400

500

600
NCE
BlackOut
CANE
Softmax

(a) PTB (80)

Epoch
0 10 20 30

Pe
rp

le
xi

ty

100

150

200

250

300
NCE
BlackOut
CANE
Softmax

(b) Gutenberg (80)

Epoch
0 10 20 30 40

Pe
rp

le
xi

ty

0

100

200

300

400

500

600
NCE
BlackOut
CANE
Softmax

(c) PTB (60)

Epoch
0 5 10 15 20 25

Pe
rp

le
xi

ty

100

200

300

400

500
NCE
BlackOut
CANE
Softmax

(d) Gutenberg (60)

Epoch
0 5 10 15 20 25

Pe
rp

le
xi

ty

0

100

200

300

400

500

600

700
NCE
BlackOut
CANE
Softmax

(e) PTB (40)

Epoch
0 5 10 15 20

Pe
rp

le
xi

ty

100

200

300

400

500
NCE
BlackOut
CANE
Softmax

(f) Gutenberg (40)

Figure 3. Test perplexity vs. training epoch on PTB and Gutenberg
datasets. Numbers in the brackets indicate the number of selected
candidates / noises.

8. Conclusion
We proposed Candidates vs. Noises Estimation (CANE)
for fast learning in multi-class classification problems with
many labels and applied this method to the word probability
estimation problem in neural language models. We showed
that CANE is consistent and the computation using SGD is
always efficient (that is, independent of the class size K).
Moreover, the new estimator has low statistical variance
approaching that of the softmax logistic regression, if the
observed class label belongs to the candidate set with high
probability. Empirical results demonstrated that CANE is
effective for speeding up both training and prediction in
multi-class classification problems and CANE is effective in
neural language modeling. We note that this work employs
a fixed distribution (i.e., the uniform distribution) to sample
noises in CANE. However it can be very useful in practice
to estimate the noise distribution, i.e., q, during training,
and select noise classes according to this distribution.

www.gutenberg.org

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

References
Bengio, S., Weston, J., and Grangier, D. Label embedding

trees for large multi-class tasks. In Advances in Neural
Information Processing Systems (NIPS), pp. 163–171,
2010.

Beygelzimer, A., Langford, J., and Ravikumar, P. Error-
correcting tournaments. In International Conference on
Algorithmic Learning Theory (ALT), pp. 247–262, 2009.

Botev, A., Zheng, B., and Barber, D. Complementary sum
sampling for likelihood approximation in large scale clas-
sification. In Artificial Intelligence and Statistics (AIS-
TATS), pp. 1030–1038, 2017.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST), 2(3):27, 2011.

Choromanska, A. E. and Langford, J. Logarithmic time
online multiclass prediction. In Advances in Neural In-
formation Processing Systems (NIPS), pp. 55–63, 2015.

Daume III, H., Karampatziakis, N., Langford, J., and
Mineiro, P. Logarithmic time one-against-some. In Inter-
national Conference on Machine Learning (ICML), pp.
923–932, 2017.

Deng, J., Berg, A. C., Li, K., and Fei-Fei, L. What does
classifying more than 10,000 image categories tell us? In
European Conference on Computer Vision (ECCV), pp.
71–84, 2010.

Deng, J., Satheesh, S., Berg, A. C., and Li, F. Fast and
balanced: Efficient label tree learning for large scale
object recognition. In Advances in Neural Information
Processing Systems (NIPS), pp. 567–575, 2011.

Geusebroek, J.-M., Burghouts, G. J., and Smeulders, A. W.
The amsterdam library of object images. International
Journal of Computer Vision (IJCV), 61(1):103–112, 2005.

Gutmann, M. U. and Hyvärinen, A. Noise-contrastive es-
timation of unnormalized statistical models, with appli-
cations to natural image statistics. Journal of Machine
Learning Research (JMLR), 13(Feb):307–361, 2012.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Huang, C., Loy, C. C., and Tang, X. Local similarity-aware
deep feature embedding. In Advances in Neural Informa-
tion Processing Systems, pp. 1262–1270, 2016.

Jernite, Y., Choromanska, A., and Sontag, D. Simultaneous
learning of trees and representations for extreme classi-
fication and density estimation. In International Con-
ference on Machine Learning (ICML), pp. 1665–1674,
2017.

Ji, S., Vishwanathan, S., Satish, N., Anderson, M. J., and
Dubey, P. Blackout: Speeding up recurrent neural net-
work language models with very large vocabularies. arXiv
preprint arXiv:1511.06909, 2015.

Le, Q. V. Building high-level features using large scale
unsupervised learning. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8595–8598, 2013.

Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G.
Distance-based image classification: Generalizing to new
classes at near-zero cost. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 35(11):2624–
2637, 2013.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
Khudanpur, S. Recurrent neural network based language
model. In Eleventh Annual Conference of the Interna-
tional Speech Communication Association, 2010.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in Neural In-
formation Processing Systems (NIPS), pp. 3111–3119,
2013.

Mnih, A. and Hinton, G. E. A scalable hierarchical dis-
tributed language model. In Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 1081–1088, 2009.

Mnih, A. and Kavukcuoglu, K. Learning word embeddings
efficiently with noise-contrastive estimation. In Advances
in Neural Information Processing Systems (NIPS), pp.
2265–2273, 2013.

Mnih, A. and Teh, Y. W. A fast and simple algorithm for
training neural probabilistic language models. In Proceed-
ings of the 29th International Conference on Machine
Learning (ICML), pp. 1751–1758, 2012.

Morin, F. and Bengio, Y. Hierarchical probabilistic neural
network language model. In The International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
volume 5, pp. 246–252, 2005.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and
transferring mid-level image representations using con-
volutional neural networks. In Proceedings of The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1717–1724, 2014.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., C. Berg, A., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Sánchez, J. and Perronnin, F. High-dimensional signature
compression for large-scale image classification. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1665–1672, 2011.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y.,
Mitchell, M., Nie, J.-Y., Gao, J., and Dolan, B. A neural
network approach to context-sensitive generation of con-
versational responses. arXiv preprint arXiv:1506.06714,
2015.

Titsias, M. K. One-vs-each approximation to softmax for
scalable estimation of probabilities. In Advances in Neu-
ral Information Processing Systems (NIPS), pp. 4161–
4169, 2016.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. Decod-
ing with large-scale neural language models improves
translation. In The Conference on Empirical Methods on
Natural Language Processing (EMNLP), pp. 1387–1392,
2013.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Supplementary Material

A. Proofs
In the theorectical analysis, we fix sK(x,θ) = 0. Then, we only need to consider Cx ∪Nx = {1, · · · ,K − 1}. Now, the
normalization factor becomes

E(x, j) = 1 +
∑

k′∈Cx

esk′ (x,θ) + esj(x,θ)/qx(j),

with some sampled class j ∈ Nx. Now, we can rewrite R and R̂ as

R(θ) = Ex
∑
k∈Cx

p(y = k|x)
∑
j∈Nx

qx(j) log
esk(x,θ)

E(x, j)
+
∑

k∈Nx

p(y = k|x) log
esk(x,θ)

E(x, k)
+ p(y = K|x)

∑
j∈Nx

qx(j) log
1

E(x, j)
.

R̂n(θ) =
1

n

n∑
i=1

[∑
k∈Cxi

I(yi = k)
∑

j∈Cxi

qxi(j) log
esk(xi,θ)

E(xi, j)
+
∑

k∈Nxi

I(yi = k) log
esk(xi,θ)

E(xi, k)
+ I(yi = K)

∑
j∈Cxi

qxi(j) log
1

E(xi, j)

]
.

In the proofs, we will use point-wise notations pk, sk, qk and Ek to represent p(y = k|x), sk(x,θ), qx(k) and E(x, k) for
simplicity.

A.1. Useful Lemma

We will need the following lemma in our analysis.
Lemma 1. For any norm ‖ · ‖ defined on the parameter space of θ, assume the quantities ‖∇θsk‖, ‖∇2

θsk‖ and ‖∇3
θsk‖

for k = 1, · · · ,K − 1 are bounded. Then, for any compact set S defined on the parameter space, we have

sup
θ∈S
|R̂n(θ)−R(θ)| p−→ 0, sup

θ∈S
‖∇R̂n(θ)−∇R(θ)‖ p−→ 0, and sup

θ∈S
‖∇2R̂n(θ)−∇2R(θ)‖ p−→ 0.

Proof. For fixed θ, let

ψ(x, y,θ) =
∑
k∈Cx

I(y = k)
∑
j∈Nx

qj log
esk

1 +
∑

k′∈Cxi
esk′ + e

sj

qj

+ I(y = K)
∑
j∈Nx

qj log
1

1 +
∑

k′∈Cx e
sk′ + e

sj

qj

+
∑

k∈Nx

I(y = k) log
esk

1 +
∑

k′∈Cx e
sk′ + esk

qk

.

Then we have R̂n(θ) = 1
n

∑n
i=1 ψ(xi,yi,θ) and R(θ) = Ex,y ψ(x,y,θ). By the Law of Large Numbers, we know that

R̂n(θ) converges point-wisely to R(θ) in probability.

According to the assumption, there exists a constant M > 0 such that

‖∇θψ(x, y,θ)‖ ≤
K−1∑
k=1

‖∇θsk‖ ≤M.

Given any ε > 0, we may find a finite cover Sε ⊂ S so that for any θ ∈ S, there exists θ′ ∈ Sε such that |ψ(x,y,θ) −
ψ(x,y,θ′)| ≤ M‖θ − θ′‖ < ε. Since Sε is finite, as n → ∞, supθ∈Sε |R̂n(θ) − R(θ)| converges to 0 in probability.
Therefore, as n→∞, with probability 1, we have

sup
θ∈S
|R̂n(θ)−R(θ)| < 2ε+ sup

θ∈Sε
|R̂n(θ)−R(θ)| → 2ε.

Let ε→ 0, we obtain the first bound. The second and the third bounds can be similarly obtained.

A.2. Proof of Theorem 1

Proof. R can be re-written as

R = Ex
∑
j∈Nx

qj

(∑
k∈Cx

pk log
esk

1 +
∑

k′∈Cx e
sk′ + esj/qj

+ pK log
1

1 +
∑

k′∈Cx e
sk′ + esj/qj

+
pj
qj

log
esj

1 +
∑

k′∈Cx e
sk′ + esj/qj

)
.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

For i ∈ Cx, we have

∇siR = Ex
∑
j∈Nx

qj

[
pi

(
1− esi

1 +
∑

k′∈Cx e
sk′ + esj/qj

)
−

∑
k 6=i∈Cx

pk
esi

1 +
∑

k′∈Cx e
sk′ + esj/qj

− pK
esi

1 +
∑

k′∈Cx e
sk′ + esj/qj

− pj/qj
esi

1 +
∑

k′∈Cx e
sk′ + esj/qj

]

= Ex
∑
j∈Nx

qj

[
pi −

(
pK +

∑
k∈Cx

pk + pj/qj

)
esi

1 +
∑

k′∈Cx e
sk′ + esj/qj

]
.

Similarly, for j ∈ Nx, we have

∇sjR = Ex qj

[
−

(
pK +

∑
k∈Cx

pk

)
esj/qj

1 +
∑

k′∈Cx e
sk′ + esj/qj

+ pj/qj

(
1− esj/qj

1 +
∑

k′∈Cx e
sk′ + esj/qj

)]

= Ex pj −

(
pK +

∑
k∈Cx

pk + pj/qj

)
esj

1 +
∑

k′∈Cx e
sk′ + esj/qj

.

By measuring sk = log pk
pK

, we see that ∇skR = 0 for k = 1, · · · ,K − 1. Therefore, sk = log pk
pK

is an extrema of R.
Now, for i, i′ ∈ Cx and j, j′ ∈ Nx, we have

Hii = ∇2
sisiR = −Ex

∑
j∈Nx

qjDj
esi(Ej − esi)

E2
j

,

Hii′ = ∇2
sisi′

R = Ex
∑
j∈Nx

qjDj
esiesi′

E2
j

,

Hij = Hji = ∇2
sisjR = ∇2

sjsiR = Ex
∑
j∈Nx

Dj
esiesj

E2
j

,

Hjj = ∇2
sjsjR = −Ex Dj

esj (Ej − esj/qj)
E2

j

,

Hjj′ = ∇2
sjsj′

R = 0,

where

Dj = pK +
∑

k′∈Cx

pk′ + pj/qj .

Now, we can write

∇2
sR =



Hi1i1 · · · Hi1i|Cx|
0 · · · Hi1j · · · 0

· ·
Hi|Cx|i1

· · · Hi|Cx|i|Cx|
0 · · · Hi|Cx|j

· · · 0

0 · · · 0 0 · · · 0 · · · 0

· ·
Hji1 · · · Hji|Cx|

0 · · · Hjj · · · 0

· ·
0 · · · 0 0 · · · 0 · · · 0


= −Ex

∑
j∈Nx

qj
Dj

Ej

[
diag(vj)−

1

Ej
vjv

>
j

]
.

where vj = (esi1 , · · · , esi|Cx| , 0, · · · , esj/qj , · · · , 0)>. Let

Aj = diag(vj)−
1

Ej
vjv

>
j .

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

For any non-zero vector ϕ = (ϕ1, · · · , ϕK−1)> ∈ RK−1, we have

ϕ>Ajϕ =
∑
i∈Cx

esiϕ2
i +

esj

qj
ϕ2

j −
1

Ej

(∑
i∈Cx

esiϕi +
esj

qj
ϕj

)2

≥

(∑
i∈Cx e

siϕi + e
sj

qj
ϕj

)2
∑

i∈Cx e
si + e

sj

qj

− 1

Ej

(∑
i∈Cx

esiϕi +
esj

qj
ϕj

)2

> 0,

for every j ∈ Nx, where the first inequality is by the Cauchy-Schwarz inequality and the second inequality is because
0 <

∑
i∈Cx e

si + esj

qj
< Ej . Therefore, −∇2

sR = Ex
∑
j∈Nx qj

Dj
Ej
Aj is positive-definite and R is strongly concave with

respect to s. Hence, sk = log pk
pK

for k = 1, · · · ,K − 1 is the only maxima of R.

A.3. Proof of Theorem 2

Proof. R can be re-written as

R(θ) = Ex
∑
k∈Cx

pk
∑
j∈Nx

qj log
esk

Ej
+
∑

k∈Nx

pk log
esk

Ek
+ pK

∑
j∈Nx

qj log
1

Ej
.

Note that Ej for any j can be viewed as a function of s = (s1, · · · , sK−1)>. Define the following function

G(s) =
∑
k∈Cx

pk
∑
j∈Nx

qj logEj +
∑

k∈Nx

pk logEk + pK
∑
j∈Nx

qj logEj ,

then for any θ 6= θ∗,

R(θ∗)−R(θ) = Ex
∑
k∈Cx

pk
∑
j∈Nx

qj

(
log

Ej

E∗j
+ s∗k − sk

)
+
∑

k∈Nx

pk

(
log

Ek

E∗k
+ s∗k − sk

)
+ pK

∑
j∈Nx

qj log
Ej

E∗j

= Ex
∑
k∈Cx

pk
∑
j∈Nx

qj log
Ej

E∗j
+
∑

k∈Nx

pk log
Ek

E∗k
+ pK

∑
j∈Nx

qj log
Ej

E∗j
+

K−1∑
k=1

pk(s∗k − sk)

= G(s)−G(s∗)−∇G(s∗)>(s− s∗) = ∆(s, s∗),

where ∆(s, s∗) is the Bregman divergence of the convex function G(s). Since G(·) is convex, we have ∆(s, s∗) ≥ 0
and ∆(s, s∗) = 0 only when s = s∗. Under the assumption that the parameter space is compact and ∀θ 6= θ∗ we have
PX (sk(x,θ) 6= sk(x,θ∗)) > 0 for k 6= K, we know that R(θ) < R(θ∗) for any θ 6= θ∗.

Given any ε′ > 0, there exists ε > 0 that R(θ∗)− R(θ) < ε implies ‖θ∗ − θ‖ < ε′. Now according to Lemma 1, there
exists a δ > 0, when n→∞, we have

R(θ∗)−R(θ̂) = R(θ∗)− R̂n(θ∗) + R̂n(θ∗)−R(θ̂) ≤ R(θ∗)− R̂n(θ∗) + R̂n(θ̂)−R(θ̂)

≤ |R(θ∗)− R̂n(θ∗)|+ |R̂n(θ̂)−R(θ̂)| < 2δ.

This implies that ‖θ̂ − θ∗‖ < δ′ for any δ′ > 0.

A.4. Proof of Theorem 3

Proof. By the Mean Value Theorem, we have
√
n(θ̂ − θ∗) = −∇2R̂n(θ̄)−1√n∇R̂n(θ∗), (12)

where θ̄ = tθ∗ + (1 − t)θ̂ for some t ∈ [0, 1]. Note that Lemma 1 implies that ∇2R̂n(θ̄)−1 converges to ∇2R(θ̄)−1

in probability; moreover, θ̂ → θ∗ in probability and hence θ̄ → θ∗ in probability. By the Slutsky’s Theorem, the limit
distribution of

√
n(θ̂ − θ∗) is given by

−∇2R(θ∗)−1√n∇R̂n(θ∗).

Observe that
√
n∇R̂n(θ∗) is the sum of n i.i.d. random vectors with mean E

√
n∇R̂n(θ∗) =

√
nE∇R(θ∗) = 0, and the

variance of
√
n(θ̂ − θ∗) is

V ar
(√

n(θ̂ − θ∗)
)

= ∇2R(θ∗)−1V ar
(√

n∇R̂n(θ∗)
)
∇2R(θ∗)−1.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

From the proof of Theorem 1, we have

∇2R(θ) = −Ex∇
[∑
j∈Nx

qj
Dj

Ej
Aj

]
∇>, (13)

where

∇ = diag

((
∇i1 , · · · ,∇i|Cx|

,∇j1 , · · · ,∇j|Nx|

)>)
and ∇k = ∇θsk.

Measuring ∇2R(θ) at θ∗, we have

∇2R(θ∗) = −Ex∇M∇> (14)

where

M =
∑
j∈Nx

qj

[
diag(uj)−

1

Dj
uju

>
j

]
,

where uj = (pi1 , · · · , pi|Cx| , 0, · · · , pj/qj , · · · , 0)>. By following the proof of Theorem 1, it is easy to show thatM � 0
is positive definite.

Next, we derive V ar
(√

n∇R̂n(θ∗)
)

. Introduce some Bernoulli variables Qj for j ∈ Nx with p(Qj = 1|x) = qj . Now,
for i, i′ ∈ Cx and j, j′ ∈ Nx, we have

Vii = V ar
(
∇iR̂n(θ∗),∇iR̂n(θ∗)

)
= Ex,Q Q

[
pi

(
1− es

∗
i

1 +
∑

k′∈Cx e
s∗
k′ + es

∗
j /qj

)2

+ (Dj − pi)

(
es
∗
i

1 +
∑

k′∈Cx e
s∗
k′ + es

∗
j /qj

)2]
· ∇i∇>i

= Ex
∑
j∈Nx

qj
pi(Dj − pi)

Dj
· ∇i∇>i ,

Vii′ = V ar
(
∇iR̂n(θ∗),∇i′R̂n(θ∗)

)
= Ex,Q Q

[
(Dj − pi − pi′)

pipi′

D2
j

− pi(1−
pi
Dj

)
pi′

Dj
− pi′(1−

pi′

Dj
)
pi
Dj

]
· ∇i∇>i′

= −Ex
∑
j∈Nx

qj
pipi′

Dj
· ∇i∇>i′ .

Vjj = V ar
(
∇jR̂n(θ∗),∇jR̂n(θ∗)

)
= Ex,Q Q

[
pj
qj

(
1− pj/qj

Dj

)2

+ (Dj − pj/qj)
p2j/q

2
j

D2
j

]
· ∇j∇>j

= Ex
∑
j∈Nx

pj (Dj − pj/qj)
Dj

· ∇j∇>j .

Vjj′ = 0.

Vij = Vji = V ar
(
∇iR̂n(Θ∗),∇jR̂n(Θ∗)

)
= Ex,Q Q

[
(Dj − pi − pj/qj)

pipj/qj
D2

j

− pi
(

1− pi
Dj

)
pj/qj
Dj

− pj/qj
(

1− pj/qj
Dj

)
pi
Dj

]
· ∇i∇>i′

= −Ex
∑
j∈Nx

pipj
Dj
· ∇i∇>i′ .

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Now, the variance can be written as

V (θ∗) = V ar
(√

n∇R̂n(θ∗)
)

=



Vi1i1 · · · Vi1i|Cx|
0 · · · Vi1j · · · 0

· ·
Vi|Cx|i1

· · · Vi|Cx|i|Cx|
0 · · · Vi|Cx|j

· · · 0

0 · · · 0 0 · · · 0 · · · 0

· ·
Vji1 · · · Vji|Cx|

0 · · · Vjj · · · 0

· ·
0 · · · 0 0 · · · 0 · · · 0


.

By comparing ∇2R(θ∗) and V (θ∗), we immediately have −∇2R(θ∗) = V (θ∗) and hence

V ar
(√

n(θ̂ − θ∗)
)

=
[
Ex∇M∇>

]−1

.

A.5. Proof of Corollary 1

Proof. By following the proof of Theorem 3, it is easy to show that the statistical variance of the softmax logistic regression
in Eq. (1) is [Ex∇Mmle∇>]−1 (with sK = 0 fixed), where

Mmle = diag




p1
...

pK−1


−


p1
...

pK−1




p1
...

pK−1


>

.

When
∑
k∈Cx∪{K} p(k,x)→ 1, we have

∑
j′∈Nx pj′ → 0 and Dj → 1. Then,

M = diag





pi1
...

pi|Cx|

pj1
...

pj|Nx|




−



pi1pi1 · · · pi1pi|Cx| pi1
∑

j′∈Nx pj′ · · · pi1
∑

j′∈Nx pj′

· · · · · · · · · · · · · · · · · ·
pi|Cx|pi1 · · · pi|Cx|pi|Cx| pi|Cx|

∑
j′∈Nx pj′ · · · pi|Cx|

∑
j′∈Nx pj′

pi1
∑

j′∈Nx pj′ · · · pi|Cx|
∑

j′∈Nx pj′ p2j1/qj1 · · · 0

· · · · · · · · · · · · · · · · · ·
pi1
∑

j′∈Nx pj′ · · · pi|Cx|
∑

j′∈Nx pj′ 0 · · · p2j|Nx|/qj|Nx|


.

If we arrange the index order inMmle according to the index order inM and denote ∆ = M −Mmle, we have

∆ =

 ∆1 ∆2

∆>2 ∆3

→ 0,

because

∆1 = 0,

∆2 =


pi1(pj1 −

∑
j′∈Nx pj′) · · · pi1(pj|Nx| −

∑
j′∈Nx pj′)

· · · · · · · · ·
pi|Cx|(pj1 −

∑
j′∈Nx pj′) · · · pi|Cx|(pj|Nx| −

∑
j′∈Nx pj′)

→ 0,

∆3 =


p2j1(1− 1/qj1) · · · pj1pj|Nx|

· · · · · · · · ·
pj|Nx|pj1 · · · p2j|Nx|(1− 1/qj|Nx|)

→ 0.

This completes the proof.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

B. The Beam Search Algorithm
The beam search algorithm used in both training and testing is depicted in Algorithm 3.

Algorithm 3 The Beam Search Algorithm.
1: Input: The root of the tree, input data point x and Beam width J .
2: Output: The J candidate classes.

3: Initialize stack S ← root and stack S ′ ← ∅;
4: Initialize the candidate class set E ← ∅;
5: while true do
6: if S is empty then
7: Break;
8: end if
9: for i = 1 to S.size() do

10: if Si is a leaf then
11: E .pushback(Si);
12: else
13: for c = 1 to Si.Child.size() do
14: Accumulate the score to Si.Child(c);
15: S ′.pushback(Si.Child(c));
16: end for
17: end if
18: end for
19: S.clear();
20: if S ′.size() > J then
21: // Using the max heap.
22: Find the top-J nodes with the highest accumulated scores in S ′ and push them into S;
23: else
24: S ← S ′;
25: end if
26: S ′.clear();
27: end while
28: // Using the max heap.
29: Return the top-J classes with the highest scores in E ;

C. A Hierarchical Clustering Method for Generating the Tree Structure
Given the data points of a dataset, we can obtain the center, i.e., the average data point, of each class by scanning the data
once and get X̄ ∈ RK×d, where K is the number of classes and d is the feature dimension. Then, a hierarchical clustering
algorithm in Algorithm 4 is performed by viewing each row of X̄ as a separate data point. In Algorithm 4, the function
‘Split(root)’ in step 16 has already constructed a b-nary tree, which can be used by the Beam Tree Algorithm. However, the
clustering algorithm, e.g., the k-means algorithm, may generate imbalanced clusters in step 9, and the resulting b-nary tree
in step 16 may be imbalanced and affect the efficiency of Beam Tree. A simple way to fix this problem is to fetch the labels
(leaves) in the tree in step 16 from left to right, where the obtained label order maintains a rough similarity relationship
among the classes. We then assign the ordered labels to the leaves of a new balanced b-nary tree from left to right.

D. Experimental Details

Figure 4. The neural network structure used for the ImageNet datasets. ‘FC’ indicates fully-connected layer.

Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Algorithm 4 A Hierarchical Clustering Algorithm for Generating the Tree over Class Labels.
1: Input: K, b and X̄ .
2: Output: a b-nary tree.

3: Function Split(node o)
4: while true do
5: if o is assigned with only one label then
6: o.isleaf = true;
7: Return;
8: end if
9: Perform any clustering algorithm, e.g., k-means, on the labels associated with the node o and obtain b clusters {L1, · · · ,Lb};

10: Split o into b children {o1, · · · , ob} and assign the label clusters {L1, · · · ,Lb} to them respectively;
11: for i = 1 to b do
12: Split(oi);
13: end for
14: end while

15: Assign root with all labels {1, 2, · · · ,K};
16: Split(root);
17: Get the label order in the leaves from left to right;
18: Assign the labels to the leaves of a new balanced b-nary tree from left to right;
19: Return the balanced b-nary tree;

Hyper-parameter tuning is computationally expensive. In order to efficiently select a good setting of the hyper-parameters,
we let each method process half epoch of the training data and use another 10% held-out subset of the training set
to tune hyper-parameters. For every classifier, the learning rate η needs to be tuned. For the LOMTree method, by
following (Choromanska & Langford, 2015), we choose the number of the internal nodes in its binary tree from a set
{K − 1, 4K − 1, 16K − 1, 64K − 1}, and tune the swap resistance from {4, 16, 64, 256}. The Recall Tree method has a
default setting for large class problem in (Daume III et al., 2017), which is also adopted in the experiments.

The VGG-16 network structure used in ImageNet-2010 and ImageNet-10K datasets is provided in Fig. 4. Parameters of
Conv layers 1-13, FC14 and FC15 are pre-trained on the ImageNet 2012 dataset.

