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A major challenge for building statistical models in the big data era is that
the available data volume far exceeds the computational capability. A com-
mon approach for solving this problem is to employ a subsampled dataset
that can be handled by available computational resources. We propose a gen-
eral subsampling scheme for large-scale multiclass logistic regression and
examine the variance of the resulting estimator. We show that asymptoti-
cally, the proposed method always achieves a smaller variance than that of
the uniform random sampling. Moreover, when the classes are conditionally
imbalanced, significant improvement over uniform sampling can be achieved.
Empirical performance of the proposed method is evaluated and compared to
other methods via both simulated and real-world datasets, and these results
match and confirm our theoretical analysis.

1. Introduction. In recent years, there has been an exponential growth in data volume,
and this has created demands for building statistical methods to analyze huge datasets. Gener-
ally, the size of these datasets far exceeds the available computational capability at hand. For
instance, it may not be computationally feasible to perform standard statistical procedures
on a single machine when the datasets are huge. Although one remedy is to develop sophis-
ticated distributed computing systems that can directly analyze large datasets, the increased
system complexity makes this approach not suitable for all scenarios. Another remedy is to
employ a subsampled dataset such that standard statistical methods can be fit by existing
computational resources. In fact, such an approach is widely used to solve big data problems.
However, subsampling may suffer from loss of statistical accuracy, that is, the variance of the
resulting estimator may be large. Therefore, a natural approach is to tradeoff statistical accu-
racy for computational efficiency by designing an effective sampling scheme that minimizes
the reduction of statistical accuracy, given a certain computational capacity.

In this paper, we examine a subsampling approach for solving large-scale multiclass lo-
gistic regression problems that are common in practical applications. The general idea of
subsampling is to assign an acceptance probability to each data point, and then select ob-
servations according to the assigned probabilities. After the subsampling procedure, only a
small portion of the data is selected from the full dataset. Hence, the model built using the
subsampled data will not be as accurate as that of using the full data. The key challenge is to
design a good sampling scheme together with the corresponding estimation procedure such
that the loss of statistical accuracy is minimized, given some fixed computational resource.
Here, the required computational resource can be measured by the amount of subsampled
data.
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There has been substantial work on subsampling methods for large-scale statistical estima-
tion problems [6–8, 18, 25–27]. The most naive method is to subsample the data uniformly.
However, uniform subsampling assigns the same acceptance probability to every data point,
which fails to differentiate the importance among the samples. For example, one scenario
often encountered in practical applications of logistic regression is when the class labels are
imbalanced. This problem has attracted significant interests in the machine learning literature
(see survey papers in [5, 12]). Generally, there are two types of commonly encountered class
imbalance situations: marginal imbalance and conditional imbalance. In the case of marginal
imbalance, some classes are much rarer than the other classes. This situation often occurs in
applications such as the fraud and intrusion detection [1, 14], disease diagnoses [24] and
protein fold classification [22]. On the other hand, conditional imbalance describes the case
when the labels (denoted as y) for most observations (denoted as x) are easy to predict. This
happens in applications with very accurate classifiers such as handwriting digits recognition
[16] and web/email spam filtering [9, 23]. Note that marginal imbalance implies conditional
imbalance, while the reverse is not necessarily true.

For marginally imbalanced binary classification problems, case-control (CC) subsampling,
which uniformly selects an equal number of samples from each class, has been widely used in
practice in epidemiology and social science studies [17]. Under this scheme, the same amount
of samples are subsampled from each class, and thus the sampled data is marginally balanced.
It is known that case-control subsampling is more efficient than uniform subsampling when
the datasets are marginally imbalanced. However, since the acceptance probability relies on
the response variable, the distribution of the subsampled data is skewed by the sample selec-
tion process [4]. Correction methods are usually needed to adjust the selection bias [2, 15].
Another method to remove bias in CC subsampling is to weight each sampled data point by
the inverse of its acceptance probability. This is known as the weighted case-control method,
which has been shown to be consistent and unbiased [13], but it may increase the variance of
the resulting estimator [19–21].

One drawback of the standard CC subsampling is that it does not consider the case when
the data are conditionally imbalanced. To address this issue, [9] proposed an improved sub-
sampling scheme, referred to as Local Case-Control (LCC) sampling, for binary logistic
regression. The LCC method assigns each data point an acceptance probability determined
not only by its label but also by its observed covariates. LCC assigns more importance on
data points that are easy to be misclassified according to a consistent pilot estimator, which
is an approximate conditional probability estimator possibly obtained using a small amount
of uniformly sampled data. The method in [9] fits a logistic model with the sampled data by
LCC, and then apply a post-estimation correction to the resulting estimator using the pilot
estimator. Therefore, the LCC sampling approach belongs to the correction based methods
such as that of [2, 15]. It is shown in [9] that given a consistent pilot estimator, the LCC esti-
mator is consistent with an asymptotic variance that may significantly outperform that of the
uniform sampling and CC based sampling methods when the data is strongly conditionally
imbalanced.

In this paper, we propose an effective sampling strategy for large-scale multiclass logistic
regression problems that generalizes the LCC sampling in several aspects. The proposed
sampling based estimation procedure follows a framework that can be summarized in the
following two steps:

(1) assign an acceptance probability to each data point and select data points according to
the assigned probabilities;

(2) fit a multiclass logistic model with the selected data points to obtain an estimate of the
unknown model parameter.
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In the proposed procedure, the acceptance probability for sampling each data point can be as-
signed using an arbitrary probability function. Unlike correction based methods [9, 15] that
are specialized for certain models such as linear model used in LCC sampling, we propose a
maximum likelihood estimate (MLE) that integrates the correction into the MLE formulation.
This approach allows us to deal with arbitrary sampling probability and always produces a
consistent estimator within the original model family, as long as the underlying logistic model
is correctly specified. This new integrated estimation method avoids the post-estimation cor-
rection step used in the existing literature, and hence it can deal with general logistic models
such as deep neural networks.

Based on this estimation framework, we propose a new sampling scheme that generalizes
LCC sampling. We briefly describe this scheme in the following. Given a rough but consis-
tent prediction p̃(y|x) of the true probability distribution p(y|x), this scheme preferentially
chooses data points with labels that are conditionally uncertain given their local observations
x based on p̃(·|·). The proposed sampling strategy is thus referred to as Local Uncertainty
Sampling (LUS). We show that the LUS estimator can achieve an asymptotic variance that
is never worse than that of the uniform random sampling. That is, we can achieve variance
of no more than γ (γ ≥ 1) times the variance of the full-sample based MLE by using no
more than 1/γ of the sampled data in expectation. Moreover, the required sample size can
be significantly smaller than 1/γ of the full data when the accuracy of the rough estimate
p̃(y|x) is high. This generalizes the result for LCC in [9], which reaches a similar conclusion
for binary logistic regression when γ ≥ 2.

We also study the case when the model is misspecified. In this case, for binary classifica-
tion, LUS has the same properties as those of LCC that the subsampling based estimator is
consistent to the best estimator for the original population given a consistent pilot estimate
(to the best estimator). Unfortunately, for general multiclass problems, the LUS estimator is
biased. Nevertheless, we empirically find that the LUS method works well for both binary
classification and multiclass classification problems even when the model is misspecified.

We conduct extensive empirical evaluations on both simulated and real-world datasets,
showing that the experimental results match the theoretical conclusions and the LUS method
significantly outperforms the previous approaches.

Our main contributions can be summarized as follows:

• we propose a general estimation framework for large-scale multiclass logistic regression,
which can be used with arbitrary sampling probabilities. The procedure always generates a
consistent estimator within the original model family when the model is correctly specified.
This method can be applied to general logistic models (e.g., deep neural networks) without
the need of post-estimation corrections;

• under this framework, we propose an efficient sampling scheme, referred to as local un-
certainty sampling. For any scalar γ ≥ 1, the proposed method can achieve asymptotic
variance no more than that of the uniform subsampling with sampling probability 1/γ ,
using an expected sample size no more than that of the uniform subsampling. Moreover,
the required sample size can be significantly smaller than that of the uniform subsampling
when the classification accuracy of the underlying problem is high.

2. Preliminaries on multiclass logistic regression. For a K-class classification prob-
lem, we observe data point (x, y) ∈ R

d × {1,2, . . . ,K} from an unknown underlying distri-
bution D, where x is the observation vector and y is the corresponding label. Given a set of
n independently drawn data points {(xi , yi) : i = 1, . . . , n} from D, the goal is to estimate K

conditional probabilities PD(Y = k|X = x) for k = 1,2, . . . ,K . We consider a multi-class
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logistic model with the following parametric form:

PD(Y = k|X = x) = ef (x,θk)

1 + ∑K−1
k′=1 ef (x,θk′ ) for k = 1, . . . ,K − 1,

PD(Y = K|X = x) = 1

1 + ∑K−1
k′=1 ef (x,θk′ ) ,

where θk is the model parameter for the kth class and f is a known function. The above
model implies that

f (x, θk) = log
PD(Y = k|X = x)

PD(Y = K|X = x)
for k = 1, . . . ,K − 1.(2.1)

Let � = (θ�
1 , θ�

2 , . . . , θ�
K−1)

� be the parameter for the entire model. Equation (2.1) is spec-
ified in terms of K − 1 log-odds with the constraint that the probabilities of all of the classes
sum to one. Note that the logistic model uses one reference class as the denominator in the
odds-ratios, and the choice of the denominator is arbitrary since the estimates are equivalent
under this choice. Throughout the paper, we use the K th class as the reference class.

When the underlying model is correctly specified, there exists a true parameter �0 =
(θ0�

1 , θ0�
2 , . . . , θ0�

K−1)
� such that

f
(
x, θ0

k

) = log
PD(Y = k|X = x)

PD(Y = K|X = x)
.(2.2)

Moreover, �0 is the maximizer of the expected population likelihood:

L(�) = Ex,y∼D

[
K−1∑
k=1

I(y = k) · f (x, θk) − log

(
1 +

K−1∑
k=1

ef (x,θk)

)]
,(2.3)

where I(·) is an indicator function. In the maximum likelihood formulation of multiclass
logistic regression, the unknown parameter �0 is estimated from the data by maximizing the
empirical likelihood:

(2.4) L̂n(�) = 1

n

n∑
i=1

[
K−1∑
k=1

I(yi = k) · f (xi , θk) − log

(
1 +

K−1∑
k=1

ef (xi ,θk)

)]
.

For large-scale multiclass logistic regression problems, n can be extremely large. In such
cases, solving the multiclass logistic regression problem (2.4) may be computationally infea-
sible due to the limited computational resources. To overcome this computational challenge,
we propose a subsampling framework in the following section.

3. A framework of subsampling based estimation. We propose a novel subsampling
based estimation framework for large-scale multiclass logistic regression. Our proposal con-
sists of two main steps:

(1) suppose that an arbitrary sampling probability function a(x, y) ∈ [0,1] is given for
every data point (x, y). For each pair of observation and label, that is, (xi , yi) (i = 1, . . . , n),
generate a random binary variable zi ∈ {0,1}, drawn from the {0,1}-valued Bernoulli distri-
bution B(xi , yi) with acceptance probability

PB(xi ,yi )(zi = 1) = a(xi , yi);
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(2) keep samples with zi = 1 for i ∈ {1, . . . , n}. Then fit a multiclass logistic regression
model based on the selected samples by solving the following optimization problem:

max
�

1

n

n∑
i=1

zi

[
K−1∑
k=1

I(yi = k)f (xi , θk)

− log

(
1 +

K−1∑
k=1

a(xi , k)

a(xi ,K)
ef (xi ,θk)

)]
.

(3.1)

We now derive the above procedure under the assumption that the logistic model is cor-
rectly specified as in Equation (2.2). As we will show later, the acceptance probability used
in the first step can be an arbitrary function, and the above method always produces a consis-
tent estimator for the original population. The computational complexity in the second step
is reduced to fitting the model with only

∑n
i=1 zi samples after the subsampling step.

Given (x, y) ∼ D, we draw a random variable z according to the Bernoulli distribution
B(x, y). This gives the following augmented distribution A for the joint variable (x, y, z) ∈
R

d × {1,2, . . . ,K} × {0,1} with probability

PA(X = x, Y = k,Z = z)

= PD(X = x, Y = k)
[
a(x, k)I(z = 1) + (

1 − a(x, k)
)
I(z = 0)

]
.

Note that each sampled data point follows (xi , yi) ∼ D, and the random variable zi is in-
dependently drawn from B(xi , yi). It follows that each joint data point (xi , yi, zi) is drawn
i.i.d. from the distribution A. For the sampled data point (xi , yi) with zi = 1, the conditional
distribution of the random variable (x, y) is

PA(X = x, Y = k|Z = 1) ∝ PD(X = x, Y = k)a(x, k).

Therefore, we have

log
PA(Y = k|X = x,Z = 1)

PA(Y = K|X = x,Z = 1)
= log

PD(Y = k|X = x)

PD(Y = K|X = x)
+ log

a(x, k)

a(x,K)
.

If f is correctly specified for D, then the following function family

g(x, θk) = f (x, θk) + log
a(x, k)

a(x,K)
(3.2)

is correctly specified for A, that is, the true parameter �0 in equation (2.2) also satisfies

g
(
x, θ0

k

) = log
PA(Y = k|X = x,Z = 1)

PA(Y = K|X = x,Z = 1)
for k = 1, . . . ,K − 1.

Therefore, we have the following logistic model under A:

PA(Y = k|X = x,Z = 1) = eg(x,θk)

1 + ∑K−1
k=1 eg(x,θk)

for k = 1, . . . ,K − 1,

PA(Y = K|X = x,Z = 1) = 1

1 + ∑K−1
k=1 eg(x,θk)

.

Then, given an arbitrary sampling probability function a(x, y) ∈ [0,1], �0 can be obtained
by using MLE with respect to the new population A:

max
�

R(�) := Ex,y,z∼A z

[
K−1∑
k=1

I(y = k) · g(x, θk)

− log

(
1 +

K−1∑
k=1

eg(x,θk)

)]
.

(3.3)
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In practice, the model parameter �0 can be estimated by empirical conditional MLE with
respect to the sampled data {(xi , yi, zi) : i = 1, . . . , n}:

max
�

R̂n(�) := 1

n

n∑
i=1

zi

[
K−1∑
k=1

I(yi = k) · g(xi , θk)

− log

(
1 +

K−1∑
k=1

eg(xi ,θk)

)]
,

(3.4)

which is equivalent to problem (3.1). Let �̂Sub = arg max� R̂n(�) be the subsampling based
estimator. As we will see in the next section, �̂Sub is a consistent estimator of �0 when the
model is correctly specified.

4. Asymptotic analysis. In this section, we examine the asymptotic behavior of the pro-
posed method described in Section 3. All of the proofs are provided in Appendix A in the
supplementary material [11].

4.1. Asymptotic properties. First, based on the empirical likelihood in equation (3.4), we
have the following result for �̂Sub.

THEOREM 4.1 (Consistency and asymptotic normality). Suppose that the parameter
space is compact that PD(f (x,�) �= f (x,�0)) > 0 for all � �= �0 and x ∼ D. Moreover,
assume the quantities ‖∇θk

f (x, θk)‖, ‖∇2
θk

f (x, θk)‖ and ‖∇3
θk

f (x, θk)‖ for k = 1, . . . ,K −
1 are bounded under some norm ‖ · ‖ for any �.1 Let p(x, k) = PD(Y = k|X = x). If equa-
tion (2.2) is satisfied, that is, the model is correctly specified, then given an arbitrary sampling
probability function a(x, y), as n → ∞, the following holds:

(1) �̂Sub converges to �0;
(2) �̂Sub asymptotically follows the normal distribution:

√
n
(
�̂Sub − �0) d−→ N

(
0,

[
Ex∼D∇S∇�]−1)

,(4.1)

where ∇ = diag([∇θ1f (x, θ0
1),∇θ2f (x, θ0

2), . . . ,∇θK−1f (x, θ0
K−1)]) is a block diagonal

matrix, each block of which is ∇θk
f (x, θ0

k), and

S = diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

a1p1
a2p2

...

aK−1pK−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ − 1∑K

k=1 akpk

⎡
⎢⎢⎢⎣

a1p1
a2p2

...

aK−1pK−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1p1
a2p2

...

aK−1pK−1

⎤
⎥⎥⎥⎦

�

,(4.2)

with notation ak and pk indicating a(x, k) and p(x, k), respectively.

Theorem 4.1 shows that given an arbitrary sampling probability a(x, k), the proposed
method in Section 3 generates a consistent estimator �̂Sub without post-estimation correc-
tion. This is different from existing methods such as the LCC sampling method in [9], which
employs post-estimation corrections. One benefit of the proposed framework is that with-
out post-estimation correction, we can still produce a consistent estimator in the original
model family, and our framework allows different sampling functions for different data points

1This assumption can be relaxed with some more complex arguments, for example, by using the moment as-
sumptions on the derivatives.
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(xi , yi). For example, in time series analysis, we may want to sample recent data points more
aggressively than past data points. This can be naturally handled by the above framework, but
not by the post-estimation correction based approach. Another benefit is that the framework
can be naturally applied to models with regularization, which can be regarded as a restriction
on the parameter space of �.

From Theorem 4.1, the estimator �̂Sub is asymptotically normal with variance [Ex∼D∇ ×
S∇�]−1. Although the sampling probability a(x, y) can be arbitrary, it is important to select
an effective sampling probability such that the variance of the resulting estimator is as small
as possible. In the following, we study a specific choice of a(x, y) that achieves this purpose.

4.2. Sampling strategy. Recall from the definition of S equation (4.2). Let Sfull be the
corresponding matrix S when we set a(x, k) = 1 for all k, that is, we accept all data points in
the dataset. Then

Sfull = diag

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

p(x,1)

p(x,2)
...

p(x,K − 1)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ −

⎡
⎢⎢⎢⎣

p(x,1)

p(x,2)
...

p(x,K − 1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

p(x,1)

p(x,2)
...

p(x,K − 1)

⎤
⎥⎥⎥⎦

�

.(4.3)

If we set a(x, k) = 1
γ

for all k for some γ ≥ 1, that is, we sample a fraction of 1
γ

of the full
dataset uniformly at random, we denote the corresponding matrix as SUS: 1

γ
. Then SUS: 1

γ
=

1
γ

Sfull. In the following, we denote the asymptotic variances of �̂Sub, the full-sample based
estimator and the estimator obtained from 1

γ
uniformly sampled data as

VSub = [
Ex∼D∇S∇�]−1

, Vfull = [
Ex∼D∇Sfull∇�]−1

and

VUS: 1
γ

= γVfull,

respectively. Our purpose is to find a better sampling strategy with lower variance than that
of uniform sampling. That is, we want to choose an acceptance probability function a(x, k)

such that

VSub � γVfull = VUS: 1
γ

for some γ ≥ 1, under the constraint that

Ex,y∼Da(x, y) ≤ 1

γ
.

The constraint requires the expected subsample size to be no more than n/γ , that is, we
sample no more than 1/γ fraction of the full data.

THEOREM 4.2 (Sampling strategy). For any observation x, let

q(x) = max
(
0.5,p(x,1), . . . , p(x,K)

)
.(4.4)

Given any γ ≥ 1, consider the following choice of the acceptance probability function:

(1) for γ ≥ 2q(x), set a(x, k) as

a(x, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(1 − q(x))

γ
if p(x, k) = q(x) ≥ 0.5,

2q(x)

γ
otherwise,

k = 1, . . . ,K;(4.5)
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(2) for 1 ≤ γ < 2q(x), set a(x, k) as

a(x, k) =
⎧⎪⎨
⎪⎩

1 − q(x)

γ − q(x)
if p(x, k) = q(x) ≥ 0.5,

1 otherwise,
k = 1, . . . ,K.(4.6)

Under the same assumptions and definitions in Theorem 4.1, we have

VSub � γVfull = VUS: 1
γ
,(4.7)

and the expected number of subsampled examples is

nSub = nEx,y∼Da(x, y) ≤ n

γ
.(4.8)

It is easy to check that the assigned acceptance probability in Theorem 4.2 is always valid,
that is, it is a value in [0,1]. With the sampling strategy in Theorem 4.2, we always use no
more than a fraction of 1/γ of the full data to obtain an estimator with variance no more than
γ times the variance of the full-sample based MLE. In other words, the proposed method is
never worse than the uniform sampling method. Moreover, the required sample size nSub can
be significantly smaller than n/γ under favorable conditions.

More precisely, we have the following formula for the expected conditional sampling prob-
ability:

Ex,y∼D a(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

γ
q(x)

(
1 − q(x)

)
under case (1) in Theorem 4.2,

γ (1 − q(x))

γ − q(x)
under case (2) in Theorem 4.2.

Therefore, in favorable cases in which most q(x) ≈ 1 for x ∼ D, that is, the data are con-
ditionally imbalanced, our method will subsample very few samples to achieve the desired
variance compared to that of the uniform random sampling with a rate of 1/γ .

An intuitive explanation for the proposed sampling strategy is that if there exists a class
k that dominates the other classes for any given x, that is, p(x, k) ≥ 0.5, then the sampling
probability will be proportional to “1 − accuracy”. That is, when the classification accuracy
for the underlying problem is high, the proposed sampling method will significantly outper-
form the uniform sampling.

For binary classification problem (K = 2), Theorem 4.2 reduces to the LCC sampling in
[9] when γ ≥ 2. Although a method to achieve a desired variance for the case of γ ∈ [1,2)

was also discussed in [9], it is different from our sampling strategy. Moreover, there is no
evidence for that method that the number of samples needed by LCC for achieving such a
desired variance is never worse than that of the uniform sampling for the case of γ ∈ [1,2).
In fact, the empirical performance of LCC can be worse than our method under the case of
γ ∈ [1,2), as we will show in the experimental section.

In the multiclass case, our method is not a natural extension of the LCC sampling, which
would imply a method to set all class probabilities to 1/K after sampling. Instead, we will
assign a smaller sampling probability for (x, y) when p(x, y) ≥ 0.5. The method is less
likely to select a sample when the label y coincides with the prediction of the underlying
true model, while a sample will likely be selected if y contradicts the underlying true model.
Since the sampling strategy prefers data points with uncertain labels, we refer to it as Local
Uncertainty Sampling (LUS). In the following, we will indicate the estimator as �̂LUS if the
acceptance probability is set according to equations (4.5) and (4.6) (recall that we use the
notation �̂Sub with an arbitrary sampling function a(x, y)).
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4.3. Randomness on the acceptance probability. In Theorem 4.2, a(x, k) is a function
of the true probability p(x, k) for k = 1, . . . ,K . In practice, p(x, k) is unknown. We instead
use a roughly estimated probability p̃(x, k) to compute the acceptance probability, which we
refer to as the pilot estimate.

There are multiple ways to estimate p̃(x, k). For example, one can obtain a pilot estimator
λ by fitting the model using a smaller independent data set, or obtain p̃(x, k) from a different
and simpler parametric model or non-parametric methods. This is different from the LCC
method, which involves post-estimation correction that relies on an explicit pilot estimator λ
that is additive to the original model parameter. For simplicity, in the following analysis, we
assume that p̃(x, k) is computed from a pilot estimator λ.

Recall from Theorem 4.1 that given an acceptance probability, the asymptotic variance
for �̂LUS is dependent on S and ∇. Since a(x, k) is computed based on λ, from equation
(4.2), we see that S is now a function of both λ and the model parameter �. We rewrite S
as S(λ,�) to emphasize its dependency on λ and �. Similarly, we represent ∇ as ∇(�).
Moreover, with the use of the pilot estimator, from equation (3.3), R(·) is now a function of
λ and �, and we rewrite it as R(λ,�).

In the following, we characterize the asymptotic distribution of �̂LUS when a pilot estima-
tor λ̂ is estimated from an independent data set.

COROLLARY 4.1. Let p̃(x, k) be a probability estimate computed using a pilot estimator

λ̂. If λ̂
p→ �0 such that p̃(x, k)

p→ p(x, k), we have
√

n
(
�̂LUS − �0) d−→ N (0,VLUS),

where VLUS = [Ex∼D∇(�0)S(�0,�0)∇(�0)�]−1 is a constant that is independent of the
pilot estimator λ̂.

Corollary 4.1 implies that as long as the pilot estimator λ̂ is a consistent estimator of �0

such that p̃(x, k) converges to p(x, k), the randomness induced by the pilot estimator λ̂ will
not inflate the asymptotic variance of �̂LUS. The result is in conjunction with that of LCC
when the model is correctly specified, and is also a generalization of their results to the case
of K > 2.

4.4. Model misspecification. In practice, the model in equation (2.2) may not be cor-
rectly specified, so a true parameter �0 may not exist. Under such case, we denote the best
estimator obtained by maximizing equation (2.3) for the original population D as �∗ and
denote the corresponding probability estimate as p∗(x, k) for k = 1, . . . ,K . Since the model
is misspecified, we know that p∗(x, k) may not equal to p(x, k).

In the following, we study the properties of LUS and consider the cases when K = 2 and
K > 2 separately. To distinguish between the two cases, we use θ to denote the model param-
eter for K = 2, that is, binary classification problems. The following proposition summarizes
results for K = 2.

PROPOSITION 4.1. For K = 2, suppose that the parameter space of θ is compact that
PD(f (x, θ) �= f (x, θ∗)) > 0 for all θ �= θ∗ and x ∼ D. Under model misspecification, let
λ = θ∗ and we have

θ∗ = arg max
θ

R
(
θ∗, θ

)
.

Moreover, θ∗ is the unique maximizer of R(θ∗, θ) and the LUS estimator is a consistent
estimator of θ∗.
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Proposition 4.1 implies that under model misspecification, if we use a perfect pilot estimate
λ = θ∗ to compute the acceptance probability, then θ̂LUS would also converge to θ∗. Again,
in practice, we never know θ∗ a priori. Therefore, we will need a pilot estimator λ̂ estimated
from an independent data set. In the following proposition, we study how the randomness of
λ̂ affects the performance of the LUS estimator when the model is misspecified.

PROPOSITION 4.2. For K = 2, assume that the pilot estimator λ̂ follows
√

n(λ̂− θ∗) d−→
N (0,Vλ) for some Vλ � 0. Set the acceptance probability according to equations (4.5) and
(4.6). Under the same conditions in Proposition 4.1, and under model misspecification, we
have

√
n
(
θ̂LUS − θ∗) d−→ N

(
0,H

(
θ∗, θ∗)−1[

J
(
θ∗, θ∗) + C

(
θ∗, θ∗)

VλC
(
θ∗, θ∗)�]

×H
(
θ∗, θ∗)−1)

,

where

H(λ, θ) = −∇2
θ R(λ, θ), J (λ, θ) = Var

(√
n∇θR(λ, θ)

)
,C(λ, θ) = ∂2R(λ, θ)

∂θ∂λ
.

Proposition 4.2 implies that as long as the pilot estimator is consistent to θ∗, θ̂LUS is
consistent to θ∗. Moreover, under model misspecification, we see that there is an inflation
in the asymptotic variance induced by the random pilot estimator λ̂. From Propositions 4.1
and 4.2, when the model is misspecified for K = 2, the LUS method has the same properties
as those of the LCC method proposed in [9].

However, when K > 2, the LUS estimator is biased.

PROPOSITION 4.3. Under model misspecification, when K > 2, the LUS estimator is
biased even when λ = �∗. However, if there exists a class k such that p(x, θ∗

k) ≥ 0.5, then
θ∗

k = arg maxθk
R(�∗,�∗−k) where �∗−k is the parameter by setting θ i = θ∗

i for i �= k.

Proposition 4.3 implies that when λ = �∗, if there exists a majority class such that
p(x, θ∗

k) ≥ 0.5, then the LUS estimator with respect to the kth class will be consistent to
θ∗

k when the other parameters θ i are fixed as θ∗
i for i �= k. Explicit characterizations of the

bias for the LUS estimator when K > 2 are complex and we put them in Appendix B in the
supplementary material [11].

Nevertheless, in our empirical studies, we find that the LUS method works well for both
binary classification and multiclass classification problems, even under model misspecifica-
tion.

5. Local uncertainty sampling algorithm. In order to apply the sampling strategy in
Theorem 4.2 empirically, according to Corollary 4.1, the main idea is to employ a rough but
consistent estimate p̃(x, k) of the probabilities p(x, k) given x, and then assign the accep-
tance probability according to p̃(x, k). In fact, we only need to have an approximate estimate
of q(x) according to equation (4.4); that is, we only need to roughly estimate the probability
of the majority class given x. In practice, p̃(x, k) can be obtained via a consistent pilot esti-
mator λ where p̃(x, k) = ef (x,λk)/(1 + ∑K−1

k′ ef (x,λk′ )). This is similar to what is employed
in [9]. However, it is not a necessity in our case to compute a pilot estimator λ in the ex-
act original model family, because we do not need post-correction with a consistent specific
model form for both the pilot estimator and the sampling based estimator. As shown in our
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Algorithm 1 The LUS Algorithm for Multiclass Logistic Regression
1: Choose a desired γ ≥ 1 to achieve the desired variance.
2: Given a rough estimate p̃i = (p̃i,1, . . . , p̃i,K)� for each data point xi , where p̃i,k is a

roughly estimated probability of xi belonging to class k.
3: Scan the data once and generate the random variables zi ∼ Bernoulli(a(xi , yi) : zi = 1)

based on the acceptance probability a(xi , yi) defined as

a(xi , yi) =
⎧⎪⎨
⎪⎩

1 − q̃i

γ − max(q̃i ,0.5γ )
if p̃i,yi

= q̃i ≥ 0.5,

min(1,2q̃i/γ ) otherwise,

where q̃i = max(0.5, p̃i,1, . . . , p̃i,K).
4: Fit a multiclass logistic regression model to the subsample set {(xi , yi) : zi = 1} with the

model function g defined in equation (3.2):

�̂LUS = arg max
�

n∑
i=1

zi

(
K−1∑
k=1

I(yi = k) · g(xi , θk)

− log

(
1 +

K−1∑
k=1

eg(xi ,θk)

))
.

(5.1)

5: Output �̂LUS.

MNIST experiment below, we use a simpler neural network structure to obtain the pilot esti-
mate compared to the network used for the logistic regression. Moreover, one may use other
techniques such as neighborhood based methods [3] to obtain a pilot estimator.

In many applications, a rough estimate is often easy to obtain. For example, when data
arrives in a data streaming manner, a pilot estimator trained using previous observations can
be used to fit a new model when new observations arrive. Moreover, a rough estimate obtained
on a small subset of the full population can be used for training on the entire dataset. In
our experiments, we adopt the latter: a small uniformly subsampled subset of the original
population is used to obtain the rough estimate p̃(x, k). This choice is sufficient for our
method to obtain good practical performance in our numerical studies. Moreover, in addition
to using a small subset of the data for the pilot, we can adopt a simpler model as described
in the last paragraph at the same time, as we will show in the MNIST experiment below. The
LUS algorithm is summarized in Algorithm 1.

6. Experiments. In this section, we evaluate the performance of the LUS method and
compare it to the uniform sampling (US) and case-control (CC) sampling methods on both
simulated and real-world datasets. For the CC sampling method, we extend the standard CC
sampling considered in the binary classification problem to multiclass problem by sampling
equal number of data points for each class. Under marginal imbalance, to sample a desired
total amount of data points, if some minority classes do not have enough samples, we keep all
data for those classes and subsample equal number of the remaining data points from other
classes. In addition, we also compare the LUS and LCC methods on the Web Spam dataset,
which is a binary classification problem studied in [9]. The experiments are implemented on
a single machine with 2.2 GHz quad-core Intel Core i7 and 16 GB memory.

6.1. Simulation: Marginal imbalance. We first simulate the case when the data is
marginally imbalanced. We generate a 3-class Gaussian model according to (X|Y = k) ∼
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N (μk,�k), which we denote as D to indicate the true data generating distribution. We set
the number of features as d = 20,

μ1 = [1,1, . . . ,1︸ ︷︷ ︸
10

,0,0, . . . ,0︸ ︷︷ ︸
10

]�, μ2 = [0,0, . . . ,0︸ ︷︷ ︸
10

,1,1, . . . ,1︸ ︷︷ ︸
10

]�,

and

μ3 = [0,0, . . . ,0︸ ︷︷ ︸
20

]�.

The covariance matrices for classes k = 1,2,3 are assigned to be the same, that is, �1 =
�2 = �3 = Id , where Id is a d × d identity matrix. So the true log-odds function f is linear
and we use a linear model to fit the simulated data, that is, the model is correctly specified.
Moreover, we set P(Y = 1) = 0.1, P(Y = 2) = 0.8 and P(Y = 3) = 0.1. This implies that the
data is marginally imbalanced and the second class dominates the population.

Since the true data distribution D is known in this case, we directly generate the full dataset
from the distribution D. For the full dataset, we generate n = 50,000 data points. The entire
procedure is repeated for 200 times to obtain the variance of different estimators. For the LUS
method, we randomly generate npilot = 5000 data points (i.e., an amount of 10% of the full
data) from D to obtain a pilot estimator in every repetition. Moreover, we generate another
ntest = 100,000 data points to test the prediction accuracy of different methods.

Recall that γ controls the desired variance of the LUS estimator according to Theorem 4.2.
In the following experiments, we will test different values of γ = {1.1,1.2, . . . ,1.9,2,3,

4,5}, respectively. Given the value of γ , suppose the LUS method will subsample a number
of nSub data points. Then we let the US and CC sampling methods select an amount of
nSub + npilot examples to achieve fair comparison, because the LUS method has to pay for its
usage of a random pilot estimate.

Since θk ∈ R
d (k = 1, . . . ,K − 1) in this case and there is an additional intercept param-

eter, the estimator contains a total number of (d + 1)(K − 1) coordinates. Denote τ as the
coordinatewise ratio between the variance of the coordinate in the subsampling based esti-
mator and the variance of the coordinate in the full-sample based MLE. We show the τ value
for each coordinate under different values of γ = {1.1,2,3} in Figure 1. In this simulation,
there are 42 coordinates. From the figures, we observe that the τ value for each coordinate of
the LUS method is around γ , which matches our theoretical analysis in Theorem 4.2. On the
other hand, the variances of the US and CC sampling methods are much higher than that of
the LUS method, even if US and CC sample npilot more data points than the LUS method.

In Figure 2(a), we plot the relationship between the average τ for all coordinates against γ .
From the figure, we observe that the relationship is close to the y = x line (the dashed green

FIG. 1. The τ value for each coordinate under different values of γ . τ denotes the ratio between the variance of
each coordinate in the subsampling based estimator and the variance of the coordinate in the full-sample based
MLE, that is, τ = Var(θ̂Sub)/Var(θ̂full).
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FIG. 2. Plots in the first simulation.

line), which implies that τ approximately equals γ . These experimental results well match
our theoretical analyses. Figure 2(b) reports the relationship between nSub/n and γ . Fig-
ure 2(c) shows the relationship between the prediction accuracy on the test data and the
proportion of used training data (nSub + npilot)/n. From the figure, when (nSub + npilot)/n

decreases, the prediction accuracy of all the methods decreases, while the LUS method shows
much slower degradation compared to the US and CC methods. Moreover, according to Fig-
ure 2(c), we only need about 20% of the full data (including those used for computing the pilot
estimator) to achieve the same prediction accuracy as the full-sample based MLE, implying
that the LUS method is very effective for reducing the computational cost while preserving
high accuracy.

6.2. Simulation: Marginal balance. In this section, we generate marginally balanced data
with conditional imbalance. Under this situation, the CC sampling method is identical to US,
and hence we omit the CC sampling method from our comparison. The settings are exactly
the same as those in the previous simulation, except that we let P(Y = 1) = P(Y = 2) =
P(Y = 3) = 1

3 , which implies that the data is marginally balanced. However, as we will see
later, this simulated data is conditionally imbalanced.

The τ value for each coordinate when γ = {1.1,2,3} is shown in Figure 3. The relation-
ship between the average τ for all the coordinates and γ is plotted in Figure 4(a). Figure 4(b)
reports the relationship between (nSub +npilot)/n and γ . In Figure 4(c), we show the relation-
ship between the prediction accuracy on the test data and the proportion of used training data
(nSub + npilot)/n. The results are similar to those of the previous simulation and demonstrate
the effectiveness of the LUS method under the marginally balanced (but conditionally im-
balanced) case. Figure 4(c) suggests that we only need about 25% of the full data (including
those used for computing the pilot estimator) to achieve the same prediction accuracy as that
of the full-sample based MLE.

FIG. 3. The τ value for each coordinate under different values of γ . τ = Var(θ̂Sub)/Var(θ̂full).
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FIG. 4. Plots in the second simulation.

In the simulations, we have fixed the amount of data used for computing the pilot estimate
as

npilot
n

= 10%. In general, increasing or decreasing this amount will reduce or increase the
variance of the pilot estimate and affect the performance of the LUS estimator accordingly.
We provide simulations to show how the performance of the LUS estimator changes with
respect to npilot in Appendix C in the supplementary material [11], and the results suggest
that a small npilot is sufficient for LUS to achieve good performance.

In large-scale applications, an empirical trick with respect to the pilot estimate is to use
two or more phases for computing the pilot estimate. That is, we can recursively apply an
LUS estimator as the pilot estimator, and recompute the LUS estimator. Since the variance of
the LUS estimator is smaller than that of the uniform sampling based estimator (when they
subsample the same amount of data), using multiple phases will reduce the variance of the
final estimator compared with using uniform sampling as the pilot estimator.

Despite of these flexibilities on choosing the pilot estimate, for simplicity, we will still use
uniform sampling and fix the portion of data for the pilot estimate in the following experi-
ments for numerical evaluations.

6.3. MNIST data. In this section, we evaluate different methods on the MNIST data,2

which is a benchmark dataset in image classification problems and the state-of-the-art results
have achieved less than 1% test error rate on this dataset. Therefore, the classification accu-
racy of this problem is high. Note that different from the LCC sampling which uses linear
models, our LUS method can accommodate general logistic models. In this experiment, we
let the model function f of the LUS estimator to be one of the state-of-the-art deep neural
networks. Since we have no knowledge about the underlying true model in this real dataset,
the adopted neural network might be misspecified. In order to save computational cost, we
use a simpler neural net structure with fewer parameters to obtain the pilot estimate p̃(x, k).
It is worth mentioning that this simpler neural network is different from the one used for
the final LUS estimator, because the LUS method only requires a rough estimate p̃(x, k) in-
stead of an explicit estimator which is needed by post-estimation correction based methods.
The detailed network structures and parameter settings are provided in Appendix D in the
supplementary material [11]. For the US method, we apply the same network structure used
by the final LUS estimator to achieve fair comparison. Since the MNIST data is marginally
balanced, the CC method is equivalent to the US method and we omit its comparison here.

The training set consists of 60,000 images and the test set has 10,000 images. We uniformly
select npilot = 6000 data points (i.e., 10% of the training data) to compute the rough estimate
p̃(x, k) in every repetition and perform 10 repetitions of the experiment to obtain the average
performance of different methods. Similar to the simulations, we assume the LUS method

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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FIG. 5. Plots in MNIST data.

samples a number of nSub data points and let the US method sample nSub +npilot data points.
Note that the setting is a bit unfair for LUS because the npilot data points used for computing
p̃(x, k) are processed by a simpler neural network. However, we still keep this protocol in
the experiment.

We test a number of values of γ in the range (1,1.04] and Figure 5(a) plots the proportion
of used data (nSub + npilot)/n against γ . Figure 5(c) shows the relationship between the test
error (%) and (nSub + npilot)/n. Note that the rough pilot estimate has a relatively large error
rate of about 3.5%; this is due to the fact that it employs a simpler network structure to save
computational cost. Nevertheless, the LUS method can achieve an error rate below 1% using
only about 25% of the training data (10% for the pilot estimate and 15% for LUS); with about
45% of the training data (10% for the pilot estimate and 35% for LUS), it achieves the same
error rate as that obtained by using the full training data and the standard neural network.
The LUS method consistently outperforms the US method. Table 1 shows the speedup of the
LUS method compared to the full-sample based estimation.

6.4. Web Spam data: Binary classification. In this section, we compare the LUS method
with the LCC method on the Web Spam data,3 which is a binary classification problem used
in [9] to evaluate the LCC method. Since the comparison among the LCC, US and CC meth-
ods on this dataset has been reported in [9], we do not repeat them here and focus on the
comparison between the LUS and LCC methods. The Web Spam data contains 350,000 web
pages and about 60% of them are web spams. This dataset is approximately marginally bal-
anced, but it has been shown to have strong conditional imbalance in [9]. We adopt the same
settings as described in [9] to compare the LUS and the LCC methods. That is, we use linear
logistic model and select 99 features which appear in at least 200 documents, and the fea-
tures are log-transformed. 10% of the observations are uniformly selected to obtain a pilot

TABLE 1
Speedup of the LUS method on MNIST data when using 45% of the training set (10% for the pilot estimate and

35% for LUS), that is, achieving the same error rate with the full-training-sample based MLE

The pilot estimate LUS Full training data Speedup

Seconds 51.0 369.2 1115.1 2.7

3http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html

http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
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FIG. 6. The τ value for each coordinate with respect to different values of γ in the Web Spam data, where
τ = Var(θ̂sub)/Var(θ̂full).

estimator. Since we only have a single dataset, we follow [9] to uniformly subsample 100
datasets, each of which contains 100,000 data points, as 100 independent “full” datasets, and
then repeat the experiments 100 times for comparison.

Observe that when γ ≥ 2, the LUS and LCC methods are equivalent to each other by
setting the parameter c = 1

γ−1 ≤ 1 of LCC in Section 3.3 of [9]. Therefore, we only focus
on the case of 1 ≤ γ < 2. In the first experiment, similar to previous experiments, we test
different values of γ = {1.1,1.2, . . . ,1.9} and accordingly set c = {10,5, . . . , 10

9 } for LCC, so
that the two methods have the same asymptotic variance. Then we will compare the number
of subsampled data points to see which method is more effective in terms of subsampled data
size nSub.

Figure 6 plots the τ values for different choices of γ . As expected from the theoretical
results, both the LUS and LCC methods have the same variance that is approximately γ (or
1 + 1

c
) times variance of the full-sample based MLE. Next, we compare the subsampling pro-

portion of different methods when γ changes in Figure 7. From the figure, the LUS method
consistently subsamples fewer data points compared with LCC when they achieve the same
variance as shown in Figure 6.

Alternatively, we fix the proportion of the sampled examples nSub/n for both LUS and
LCC methods (by carefully choosing γ and c), and we test the variance of the estimators
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FIG. 7. nSub/n v.s. γ (or 1 + 1
c ) in Web Spam data.

to see which one has lower variance. Table 2 shows the average variance of the coordinates
in the LCC estimator and the LUS estimator. We observe that the LUS estimator always
achieves lower variance compared to that of the LCC estimator. These results demonstrate
that the LUS method is not only theoretically better justified but also more effective than the
LCC method in practice for the case of γ ∈ [1,2).

7. Conclusion. This paper introduced a general subsampling method for solving large-
scale multiclass logistic regression problems. We investigated the asymptotic variance of the
proposed estimator when the model is correctly specified. Based on the theoretical analy-
sis, we proposed an effective sampling strategy, referred to as local uncertainty sampling, to
achieve any given level of desired variance. We proved that the method always achieves lower
variance than random subsampling for a given expected sample size, and the improvement
may be significant under the favorable condition of strong conditional imbalance. Therefore,
the method can effectively accelerate the computation of large-scale multiclass logistic re-
gression in practice. Empirically, we will need a pilot estimate of the probability to set up the
acceptance probability. We proved that the variance of the proposed estimator is independent
of the randomness of this pilot estimate as long as the pilot estimator is consistent.

We also studied the case of model misspecification. We showed that for binary classifi-
cation problems (K = 2), the proposed method can generate a consistent estimator (to the
best estimator of the misspecified model) if the pilot estimator is consistent. For K > 2, the
proposed estimator is biased and we also provided analysis to quantify the bias.

The empirical studies supported the theory and demonstrated that the local uncertainty
sampling method outperforms the uniform sampling, case-control sampling and the local
case-control sampling methods under various settings. By using the proposed method, we are
able to select a very small subset of the original data to achieve the same performance as that

TABLE 2
Average variance of the coordinates in the estimators of LCC and LUS

nSub/n

0.15 0.2 0.25 0.3

LCC 2.2511 ± 1.9586 1.8691 ± 1.3655 1.8270 ± 1.4078 1.7303 ± 1.1001
LUS 2.1108 ± 2.0495 1.5608 ± 1.1668 1.6017 ± 1.5674 1.6196 ± 1.7184
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of the full dataset, which provides an effective mean for big data computation under limited
resources.

This work suggests several future directions. First, as we have mentioned at the end of
Section 6.2, one can iteratively apply an obtained LUS estimator as the pilot estimator for the
next round of fitting the model. This is closely related to the boosting method [10] and a deep
discussion on this relationship would be of great interest. Second, considering a situation
of online learning with limited budget, the LUS method would likely provide an effective
sampling strategy for this problem. Moreover, in high-dimensional settings, where sparse
models, for example, Lasso and Group Lasso, are widely adopted, it would be interesting to
extend the LUS method to deal with regularized multiclass logistic regression with special
considerations on high-dimensional asymptotic regime.
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SUPPLEMENTARY MATERIAL

Supplement: Proofs and supplementary experimental results (DOI: 10.1214/19-
AOS1867SUPP; .pdf). Appendix A in the supplementary material contains proofs for The-
orem 4.1, Theorem 4.2, Corollary 4.1, Proposition 4.1, Proposition 4.2 and Proposition 4.3.
Appendix B provides explicit characterizations of the bias for the LUS estimator when K > 2
under model misspecification. Appendix C provides some additional simulation results for
varying the amount of the data used for the pilot estimate. Finally, Appendix D reports the
detailed neural network structures used in the MNIST dataset.
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