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The Lagrangian Dual of TCC
Consider problem (5). Let Y = X̃ − D̃B, and the La-
grangian function is

L(Y,B;λΘ) =
1

2
‖Y‖2F + λ‖WB‖1,q + 〈λΘ, X̃− D̃B−Y〉

=
1

2
‖Y‖2F + 〈λΘ, X̃−Y〉 − 〈λΘ, D̃B〉+ λ‖WB‖1,q, (20)

where λΘ ∈ Rn×p is the Lagrangian multiplier. To find the
dual, we need to solve the following problems:

min
Y

f1(Y) =
1

2
‖Y‖2F − 〈λΘ,Y〉,

min
B

f2(B) = −〈λΘ, D̃B〉+ λ‖WB‖1,q.

By setting ∂f1(Y)
∂Y = 0, we obtain

Y∗ = λΘ.

Therefore,

min
Y

f1(Y) = f1(Y∗) = −λ
2

2

∥∥∥∥∥Θ− X̃

λ

∥∥∥∥∥
2

F

+ ‖X̃‖2F .

Consider f2(B). Let βr be the rth row of B. The optimality
condition is

0 ∈ ∂f2(βr) = −λ
[
D̃TΘ

]
r

+ λwr∂‖βr‖q,

= −λd̃rΘ + λwr∂‖βr‖q,

where r ↔ (i, j), i.e. the rth row of B corresponds to the
data pair (i, j), and d̃r is the rth row of D̃T . The above sub-
gradient leads to

d̃rΘ = wrvr, vr ∈ ∂‖βr‖q. (21)

By noting that

〈vr,βr〉 = ‖βr‖q,

we have 〈
d̃rΘ,βr

〉
= wr‖βr‖q.

Thus we can see that

0 = min
βr

f2(βr).

Eq. (21) implies that

d̃rΘ ∈ wrBq̄,

where q̄ = q
q−1 and Bq̄ is the unit `q̄ ball in Rp. Combining

all the derivations above, the dual of problem (5) is

min
Θ

{
g(Θ) =

λ2

2

∥∥∥∥∥Θ− X̃

λ

∥∥∥∥∥
2

F

− ‖X̃‖2F :

∥∥∥d̃rΘ∥∥∥
q̄
≤ wr, i = 1, · · · , n− 1

}
.

The Lagrangian Dual of CGCC
Let Z = CA ∈ Rm×p, then the Lagrangian is

L(Z,A;λΦ) =
1

2
‖A−X‖2F + λ‖W̃Z‖1,q + 〈λΦ, C̃A− Z〉

=
1

2
‖A−X‖2F + 〈λΦ, C̃α〉 − 〈λΦ,Z〉+ λ‖W̃Z‖1,q, (22)

where λΦ ∈ Rm×p is the Lagrangian multiplier. We solve
the following subproblems:

min
A

f1(A) =
1

2
‖A−X‖2F + 〈λΦ, C̃A〉,

min
Z
f2(Z) = −〈λΦ,Z〉+ λ‖W̃Z‖1,q.

By setting ∂f1(A)
∂A = 0, we obtain

A∗ = X− λC̃TΦ.

Therefore,

min
A

f1(A) =
λ2

2
‖C̃TΦ‖2F + 〈λΦ, C̃(X− λC̃TΦ)〉

= λ〈Φ, C̃X〉 − λ2

2
‖C̃TΦ‖2F .

Consider f2(Z). Note that f2(Z) can be decomposed into m
subproblems corresponding to the rows of Z:

min
zr

f2(zr) = −〈λφr, zr〉+ λw̃r‖zr‖q, r = 1, · · · ,m.

Now, the optimality condition is
0 ∈ ∂f2(zr) = −λφr + λw̃r∂‖zr‖q,

which leads to
φr = vr, vr ∈ w̃r∂‖zr‖q. (23)

By noting that
〈vr, zr〉 = w̃r‖zr‖q,

we have
〈φr, zr〉 = w̃r∂‖zr‖q.

Thus we can see that
0 = min

zr
f2(zr).

Moreover, Eq. (23) implies that
φr ∈ w̃rBq̄,

Combining all the derivations above, the dual problem of the
CGCC problem in (1) is

min
Φ

{
g(Φ) =

λ2

2

∥∥∥∥C̃TΦ− X

λ

∥∥∥∥2

F

− ‖X‖2F : ‖φr‖q̄ ≤ 1, r = 1, · · · ,m

}
.

Proof of Lemma 1
We prove the statement by contradiction. Since each row of
C denotes one edge in ET , for the rth row cr according
to the edge (i, j) in ET , we represent r ↔ (i, j). Assume
that C is rank-deficient, then there exist at least one row
crk such that crk can be linearly represented by the resid-
ual n − 2 rows, i.e., crk =

∑
k′ 6=k ak′crk′ , where ak′ ’s are

scalars. Then we must have ik ∈ {ik′}k′ 6=k ∪ {jk′}k′ 6=k and
jk ∈ {ik′}k′ 6=k ∪ {jk′}k′ 6=k, where rk ↔ (ik, jk), because
there are only two non-zero elements at the ith and jth po-
sition for one row cr. In other words, node ik and node jk
are connected via another path instead of (ik, jk), therefore,
there exists a ring in T , which contradicts the fact that T is
a tree. �



Proof of Lemma 2
From the definition of C, it is easy to verify that 1n is or-
thogonal to all the rows in C, therefore rank(D) = n and
D is invertible. �

Proof of Theorem 1
As mentioned previously, (i)⇔(ii) is obvious. Then we show
(ii)⇔(iii). We first prove (ii)⇒(iii). Assume (ii) is satisfied,
then from the KKT condition in Eq. (7), we have D̃B∗ = 0.
Assume B∗ 6= 0, it must be that the value of the objec-
tive function in problem (5) satisfies h(0) > h(B∗), i.e.
1
2‖X̃‖

2
F > 1

2‖X̃‖
2
F + λ‖WB∗‖1,q , which is impossible.

Therefore, we have B∗ = 0. The converse (iii)⇒(ii) can be
easily verified. �

Useful Lemmas
Lemma 4. (Ruszczyński 2006; Bauschke and Combettes
2011) For a closed convex set S ∈ Rn×p and a point u ∈ S,
the normal cone to S at u is defined by

NS(u) = {v : 〈v,u′ − u〉 ≤ 0, ∀u′ ∈ S}. (24)

Denote by

PS(u) = arg min
u′∈S

‖u− u′‖F .

Then, the following statements hold: (i) NS(u) = {v :
PS(u + v) = u}; (ii) PS(u + v) = u, ∀v ∈ NS(u);
(iii) For u 6∈ S, u = PS(u)⇔ u− u ∈NS(u).
Lemma 5. (Nesterov 2004) For any convex constrained op-
timization problem:

min
X∈S

f(X), (25)

where S is convex and closed set and f(·) is convex and
differentiable. X∗ ∈ S is an optimal solution of Eq. (25) if
and only if

−f ′(X∗) ∈NS(X∗). (26)

Lemma 6. Let n(λ′) be defined in Theorem 2 for any λ′ <
λmax and q̄ ∈ {1, 2,∞}, we have n(λ′) ∈NF (Θ∗(λ′)).

Proof: We prove the case when q = q̄ = 2, and other
cases can be proved in a similar way. We first discuss the
condition that λ′ < λmax. When λ′ < λmax, from Theorem
1 we know X̃

λ′ 6∈ F . Therefore,

X̃

λ′
−PF

(
X̃

λ′

)
=

X̃

λ′
−Θ∗(λ′) 6= 0.

From condition (iii) in Lemma 4, we have

X̃

λ′
−Θ∗(λ′) ∈NF (Θ∗(λ′)).

Next, we consider λ′ = λmax. From Theorem 1, we have
Θ∗(λ′) = X̃

λ′ ∈ F . Now we have to show〈
dT∗ d∗

X̃

λmax
,Θ− X̃

λmax

〉
≤ 0, ∀Θ ∈ F ,

which is equivalent to〈
d∗X̃

λmax
,d∗Θ−

d∗X̃

λmax

〉
≤ 0, ∀Θ ∈ F .

From the definition of d∗, we have∥∥∥∥∥d∗X̃

λmax

∥∥∥∥∥
2

= w∗ = max{wr}n−1
r=1 .

Recall the definition of F , where

Fr =

{
Θ :

∥∥∥d̃rΘ∥∥∥
q̄
≤ wr

}
, r = 1, · · · , n− 1.

Then we have〈
d∗X̃

λmax
,d∗Θ−

d∗X̃

λmax

〉
=

〈
d∗X̃

λmax
,d∗Θ

〉
− w2

∗

≤

∥∥∥∥∥d∗X̃

λmax

∥∥∥∥∥
2

‖d∗Θ‖2 − w
2
∗

≤ 0,

which completes the proof. �

Proof of Theorem 2
We prove the case when q = q̄ = 2, and other cases can be
proved in a similar way. The statement in Eq. (9) is equiva-
lent to∥∥Θ∗(λ)−Θ∗(λ′)

∥∥2

F
≤
〈
Θ∗(λ)−Θ∗(λ′),v⊥(λ, λ′)

〉
. (27)

We will show Eq. (27) holds. From Lemma 4 and Lemma 6,
we have 〈

n(λ′),Θ−Θ∗(λ′)
〉
≤ 0, ∀Θ ∈ F . (28)

By letting Θ = Θ∗(λ) and Θ = 0, we can obtain the fol-
lowing results respectively:〈

n(λ′),Θ∗(λ)−Θ∗(λ′)
〉
≤ 0, (29){ 〈

n(λ′), X̃
〉
≥ 0, if λ′ = λmax,

‖X̃‖F
λ′ ≥ ‖Θ

∗(λ′)‖F , if λ′ < λmax.
(30)

Moreover, from Lemma 6, we also have
X̃

λ
−Θ∗(λ) ∈NF (Θ∗(λ)).

Then, we have〈
X̃

λ
−Θ∗(λ),Θ∗(λ′)−Θ∗(λ)

〉
≤ 0. (31)

Eq. (31) is equivalent to∥∥Θ∗(λ)−Θ∗(λ′)
∥∥2

F
≤
〈
Θ∗(λ)−Θ∗(λ′),v(λ, λ′)

〉
. (32)

Comparing Eq. (32) with Eq. (27), we consider Eq. (27)
again:〈

Θ∗(λ)−Θ∗(λ′),v⊥(λ, λ′)
〉

=
〈
Θ∗(λ)−Θ∗(λ′),v(λ, λ′)

〉
−
〈
Θ∗(λ)−Θ∗(λ′),v(λ, λ′)− v⊥(λ, λ′)

〉
=
〈
Θ∗(λ)−Θ∗(λ′),v(λ, λ′)

〉
−
〈

Θ∗(λ)−Θ∗(λ′),
〈v(λ, λ′),n(λ′)〉
‖n(λ′)‖2F

n(λ′)

〉
(33)



Based on Eq. (33), recall Eq. (29) and we know that if
〈v(λ, λ′),n(λ′)〉 ≥ 0, we can prove the theorem. Actually,
we have〈

v(λ, λ′),n(λ′)
〉

=

〈
X̃

λ
−Θ∗(λ′),n(λ′)

〉

=

(
1

λ
− 1

λ′

)〈
X̃,n(λ′)

〉
+

〈
X̃

λ′
−Θ∗(λ′),n(λ′)

〉
.

If λ′ = λmax, recall the first statement in Eq. (30) and λ <
λ′, it is easy to see that(

1

λ
− 1

λ′

)〈
X̃,n(λ′)

〉
≥ 0.

If λ′ < λmax, from the second statement in Eq. (30), we also
have 〈

X̃,n(λ′)
〉

=

〈
X̃,

X̃

λ′
−Θ∗(λ′)

〉

≥ ‖X̃‖
2
F

λ′
− ‖X̃‖F ‖Θ∗(λ′)‖F

≥ 0.

Now the last thing is to show that〈
X̃

λ′
−Θ∗(λ′),n(λ′)

〉
≥ 0. (34)

Eq. (34) is obvious, since〈
X̃

λ′
−Θ∗(λ′),n(λ′)

〉
=

{
0, if λ′ = λmax,
‖n(λ′)‖2F , if λ′ < λmax.

Finally, we reach the conclusion. �

Proof of Theorem 3
From the feasible region O in Eq. (10), for any Θ ∈ O we
can write

Θ = o(λ, λ′) + Υ, ‖Υ‖F ≤ R(λ, λ′).

Therefore, if q̄ = 1, i.e. q =∞, we have

sup
Θ∈O

∥∥∥d̃rΘ∗∥∥∥
1

= sup
‖Υ‖F≤R(λ,λ′)

∥∥∥d̃ro(λ, λ′) + d̃rΥ
∥∥∥

1

=
∥∥∥d̃ro(λ, λ′)

∥∥∥
1

+R(λ, λ′)‖d̃r‖2,

else if q̄ = 2, i.e. q = 2, we have

sup
Θ∈O

∥∥∥d̃rΘ∗∥∥∥
2

= sup
‖Υ‖F≤R(λ,λ′)

∥∥∥d̃ro(λ, λ′) + d̃rΥ
∥∥∥

2

=
∥∥∥d̃ro(λ, λ′)

∥∥∥
2

+R(λ, λ′)‖d̃r‖2,

else if q̄ =∞, i.e. q = 1, we have

sup
Θ∈O

∥∥∥d̃rΘ∗∥∥∥
∞

= sup
‖Υ‖F≤R(λ,λ′)

∥∥∥d̃ro(λ, λ′) + d̃rΥ
∥∥∥
∞

=
∥∥∥d̃ro(λ, λ′)

∥∥∥
∞

+R(λ, λ′)‖d̃r‖2,

where the supreme values can be obtained directly by
Cauchy inequality and norm inequalities. From these
supreme values, we can directly reach the conclusion. �

Proof of Lemma 3
Because the graph G in CGCC model is a cyclic graph, there
exists at least one ring in EC . Recall that we require G to be
connected graph. Therefore, if there exist rings in EC , we
must have that the cardinality |EC | = m ≥ n > n− 1.

Moreover, from the proof of Lemma 1, we know that if
a ring exists in EC , there must exist one row of C that can
be linearly represented by some other rows. For any m ≥ n,
there exists at least one ring in EC , therefore, C < n is rank-
deficient. �

Proof of Theorem 4
The proofs can be completed by following those of Theorem
1. �

Proof of Theorem 5
We prove the case when q = q̄ = 2, and other cases can
be proved in a similar way. When λ′ < λmax, Eq. (19) is
equivalent to∥∥∥ΛΦ

∗
(λ)−ΛΦ

∗
(λ′)

∥∥∥2

F
≤
〈
ΛΦ

∗
(λ)−ΛΦ

∗
(λ′),v⊥(λ, λ′)

〉
.

(35)

We will show Eq. (35) holds. Note that when λ′ < λmax,
Λn(λ′) = −h′(Φ∗). From Lemma 5, we have〈

n(λ′),ΛΦ−ΛΦ
∗
(λ′)

〉
≤ 0, ∀Φ ∈ F . (36)

By letting Φ = Φ
∗
(λ) and Φ = 0, we can obtain the fol-

lowing results respectively:〈
n(λ′),ΛΦ

∗
(λ)−ΛΦ

∗
(λ′)

〉
≤ 0, (37)∥∥Λ−1Y

∥∥
F

λ′
≥ ‖ΛΦ

∗
(λ′)‖F , (38)

Moreover, from Lemma 5, we also have

−h′(Φ∗(λ)) =
Y

λ
−DΦ

∗
(λ) ∈NF (Φ

∗
(λ)).

Then, we have〈
Y

λ
−DΦ

∗
(λ),Φ

∗
(λ′)−Φ

∗
(λ)

〉
≤ 0. (39)

Eq. (39) is equivalent to∥∥∥ΛΦ
∗
(λ)−ΛΦ

∗
(λ′)

∥∥∥2

F
≤
〈
ΛΦ

∗
(λ)−ΛΦ

∗
(λ′),v(λ, λ′)

〉
.

(40)

Comparing Eq. (40) with Eq. (35), we consider Eq. (35)
again:〈

ΛΦ
∗
(λ)−ΛΦ

∗
(λ′),v⊥(λ, λ′)

〉
=
〈
ΛΦ

∗
(λ)−ΛΦ

∗
(λ′),v(λ, λ′)

〉
−
〈
ΛΦ

∗
(λ)−ΛΦ

∗
(λ′),v(λ, λ′)− v⊥(λ, λ′)

〉
=
〈
ΛΦ

∗
(λ)−ΛΦ

∗
(λ′),v(λ, λ′)

〉
−
〈

ΛΦ
∗
(λ)−ΛΦ

∗
(λ′),

〈v(λ, λ′),n(λ′)〉
‖n(λ′)‖2F

n(λ′)

〉
(41)



Based on Eq. (41), recall Eq. (37) and we know that if
〈v(λ, λ′),n(λ′)〉 ≥ 0, we can prove the theorem. Actually,
we have〈
v(λ, λ′),n(λ′)

〉
=

〈
Λ−1Y

λ
−ΛΦ

∗
(λ′),n(λ′)

〉
=

(
1

λ
− 1

λ′

)〈
Λ−1Y,n(λ′)

〉
+

〈
Λ−1Y

λ′
−ΛΦ

∗
(λ′),n(λ′)

〉
.

From Eq. (38), we have〈
Λ−1Y,n(λ′)

〉
=

〈
Λ−1Y,

Λ−1Y

λ′
−ΛΦ

∗
(λ′)

〉
≥ ‖Λ

−1Y‖2F
λ′

− ‖Λ−1Y‖F ‖ΛΦ
∗
(λ′)‖F

≥ 0.

Now the last thing is to show that〈
Λ−1Y

λ′
−ΛΦ

∗
(λ′),n(λ′)

〉
≥ 0. (42)

Eq. (42) is obvious, since〈
Λ−1Y

λ′
−ΛΦ

∗
(λ′),n(λ′)

〉
= ‖n(λ′)‖2F ≥ 0.

Now we complete the proof. �

Details for Definition 1
Let O be the feasible region constructed from Eqs. (19):

O(λ, λ′) =
{
Φ(λ) : ‖ΛΦ(λ)− o(λ, λ′)‖F ≤ R(λ, λ′)

}
.
(43)

We have to estimate the following supreme values:

sup
Φ

{
‖φr‖q̄ : Φ ∈ O, r = 1, · · · ,m

}
, (44)

Let Ξ = ΛΦ. The problem becomes

sup
Ξ

{
‖ζrΞ‖q̄ : Λ−1Ξ ∈ O, r = 1, · · · ,m

}
, (45)

where ζr is the rth row of Λ−1. The supreme values in Eq.
(45) can be obtained exactly from the proof of Theorem 3.
�

Analysis for δ
The parameter δ in problem (18) plays an important role,
since λmax depends on the value of δ. When δ is very small,
computing λmax may be numerically unstable but when δ
is large, the relaxed dual form will have a large deviation
from the original one, leading to an inaccurate estimation for
λmax. However, since the CGCC problem is convex prob-
lem, there exist a certain value of λ∗max that will guarantee
all the data points are clustered. Therefore, In the implemen-
tation of the Cigar rules, we propose to empirically find the
maximum value λ∗max first, and then choose an appropriate
δ such that the induced λmax satisfes that λmax is close to
λ∗max but λ∗max < λmax, which makes the condition in Theo-
rem 1 satisfied. Empirically, we can assign a relatively large
initial value to δ which will induce a small λmax and then
decrease δ gradually until λ∗max < λmax is satisfied.

Efficient Ways for Computing The Matrices Used
in The Cigar Rule
When the number of rows in C is large, e.g. the CC problem
with fully connected graph m = n(n−1)

2 , calculating the in-
verse of D ∈ Rm×m directly is infeasible. However, from
the definition of D, we have the following efficient way to
compute D

−1
:

D
−1

=
(
CC

T
+ δI

)−1

=
1

δ

(
C√
δ

C
T

√
δ

+ I

)−1

=
1

δ

(
I− C√

δ

(
I +

C
T

√
δ

C√
δ

)−1
C
T

√
δ

)

where C
T
C ∈ Rn×n and the matrix inverse can be com-

pleted efficiently. The square root matrices Λ and Λ−1 can
be obtained by the eigen-decomposition technique from ma-
trices D or D

−1
.

Additional Experimental Results
Fig. 5 shows the `2 clusterpath generated from the TCC and
CGCC models on the two synthetic datasets when n = 200.
According to the results, we can see that all the models can
correctly detect the cluster. Figs. 6 and 7, Tables 4 and 5
provide the additional experimental results on the synthetic
data where n = 1000.
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(d) Spiral

Figure 6: The performance of the Eater rule on synthetic data
(n=1000).

Table 4: Running Time (seconds). E+S denotes the total time cost
of using the Eater rule and the solver.

Data Solver Eater E+S Speedup
halfmoon (n=1000) 1495.6 4.1 288.7 5.2

spiral (n=1000) 3563.5 4.3 804.1 4.4

Table 5: Running Time (seconds). C+S means the total time cost
of using the Cigar rule and the solver.

Data Model Solver Cigar C+S Speedup
Halfmoon CGCC-1 3867.8 149.7 722.7 5.4
(n=1000) CGCC-2 4709.7 301.1 1028.4 4.6

Spiral CGCC-1 10314.8 164.3 2349.8 4.4
(n=1000) CGCC-2 12735.2 338.4 3178.4 4.0
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(f) CGCC-2

Figure 5: `2 clusterpath generated by the GCC models on the synthetic datasets. (a)-(c): halfmoon data (n=200); (d)-(f) spiral data (n=200).
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Figure 7: The performance of the Cigar rule on synthetic data (n=1000). The first and second rows denote the results on the halfmoon and
spiral dataset respectively.


