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Abstract

The Graph-based Convex Clustering (GCC) method has
gained increasing attention recently. The GCC method adopts
a fused regularizer to learn the cluster centers and obtains a
geometric clusterpath by varying the regularization param-
eter. One major limitation is that solving the GCC model is
computationally expensive. In this paper, we develop efficient
graph reduction techniques for the GCC model to eliminate
edges, each of which corresponds to two data points from the
same cluster, without solving the optimization problem in the
GCC method, leading to improved computational efficiency.
Specifically, two reduction techniques are proposed accord-
ing to tree-based and cyclic-graph-based convex clustering
methods separately. The proposed reduction techniques are
appealing since they only need to scan the data once with neg-
ligibly additional cost and they are independent of solvers for
the GCC method, making them capable of improving the effi-
ciency of any existing solver. Experiments on both synthetic
and real-world datasets show that our methods can largely
improve the efficiency of the GCC model.

Introduction
Clustering, which partitions a data set into several subsets
with each one having similar data points, is an important
unsupervised task, and it has been extensively studied in the
literature. Many clustering algorithms have been proposed
such as the k-means method, density-based approaches (Es-
ter et al. 1996), spectral clustering methods (Ng, Jordan, and
Weiss 2002), and minimum spanning tree (MST) algorithms
(Grygorash, Zhou, and Jorgensen 2006; Wang, Wang, and
Wilkes 2009). Different algorithms have their own favors to
capture certain types of cluster structure. For example, the
k-means algorithm can group data points with each clus-
ter having a convex shape but the spectral clustering and
MST methods can deal with the non-convex shape and even
more complex one. All the aforementioned clustering meth-
ods have some limitations, e.g., some of them relying on the
initial setting of the cluster center since it is difficult to attain
the global optimum and many of them failing to determine
the number of clusters.
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Recently, the GCC method (Hocking et al. 2011; Chen et
al. 2014) has attracted increasing attentions since it can de-
termine the number of clusters based on the globally optimal
solution of its convex objective function. The GCC model
organizes the data points as an undirected graph and adopts a
fused regularizer as the sum of a set of pairwise fusion terms
each of which corresponds to an edge in the graph. Then, the
GCC method obtains a clusterpath by optimizing the objec-
tive functions according to a sequence of regularization pa-
rameters. The generated clusterpath provides a meaningfully
geometric interpretation for the clustering structure hidden
in the data. For the clustering performance, the GCC method
is comparable to the state-of-the-art clustering methods such
as the spectral clustering. However, solving the GCC model
is very computationally expensive due to the complex fused
regularizer.

In this paper, we develop novel graph reduction tech-
niques for the GCC model. Instead of seeking efficient al-
gorithms to solve the GCC model, the graph reduction tech-
niques are developed to eliminate edges in the graph before
optimizing the objective function in the GCC model such
that the data points connected by the eliminated edges are
(almost) guaranteed to be grouped. In this way, we can re-
duce the number of variable to be optimized since the vari-
ables for the data points to be detected are from the same
cluster and will be merged as one variable, hence we can
improve the computational efficiency. Those reduction tech-
niques are obtained from the analysis on the relations be-
tween the primal and dual forms of the GCC model. The
proposed reduction techniques have good match with the
clusterpath generated by the GCC method since the reduc-
tion techniques can identity the data points to be grouped
together when varying the value of the regularization param-
eter, which is just what the clusterpath needs. The proposed
reduction techniques are appealing since they only need to
scan the data once with negligibly additional cost and they
can improve the efficiency of any existing solver for the
GCC model since they are independent of solvers. Specif-
ically, we consider two types of graphs in the GCC model,
i.e., the tree which is acyclic and the generally cyclic graph,
and correspondingly two reduction techniques are proposed
for the tree-based convex clustering (TCC) model and the
cyclic-graph-based convex clustering (CGCC) model, re-
spectively. We evaluate the proposed reduction techniques



on both synthetic and real-world datasets and find that they
can gain considerable speedup.

Overview on The GCC Method
If unspecified, we use bold-face and capital letters for matri-
ces, bold-face and lower-case letters for vectors, and lower-
case letters for scalars. We are given n data points in a p-
dimensional space and the data matrix is denoted by X ∈
Rn×p, where xi, the ith row of X, denotes the ith data
point. There is an undirected graph G = (V, E) to encode
relations between the n data points, where each data point
corresponds to a vertex in V and E denotes the set of edges
in G. The GCC method proposed in (Hocking et al. 2011)
aims to solve the following convex optimization problem:

min
A∈Rn×p

1

2
‖A−X‖2F + λ

∑
(i,j)∈E

wij‖αi −αj‖q, (1)

where ‖ · ‖F denotes the matrix Frobenius norm, αi is the
ith row of A, wij ≥ 0 denotes the similarity between the
corresponding pair of data points, and ‖ · ‖q denotes the `q
norm of a vector. Here αi can be viewed as an instance-
specific cluster center for xi and different data points hav-
ing the same instance-specific cluster center will be con-
sidered to belong to the same cluster. So the fused regular-
izer (i.e., the second term in problem (1)) is to detect the
equivalence among all the possible pairs of rows in the ma-
trix A based on E . According to (Chen et al. 2014), the
graph G is only required to be connected and hence it can
be sparse where many wij’s are equal to zero or equiva-
lently the set of edges E has a small size. The continuous
path of the optimal solutions obtained from problem (1) by
varying λ is called the clusterpath (Hocking et al. 2011;
Chen et al. 2014).

In the following analysis, we consider two instantiations
of the GCC model depending on the structure of G, i.e. the
TCC and CGCC models. We first consider the simple case
where G is a tree and correspondingly problem (1) defines
the TCC model, and then study a general graph, which can
be cyclic, with problem (1) as the objective function of the
CGCC model.

Tree Reduction for The TCC Model
In this section, we consider the TCC model. The tree used is
denoted by T = (V, ET ). It is obvious that |ET |, the size of
ET , is equal to n− 1.

The Dual Form for The TCC Model
We first transform problem (1) for the TCC model. The
fused regularizer, denoted by Ωq(A), in problem (1) can
be reformulated as Ωq(A) = λ‖WCA‖1,q , where ‖ · ‖1,q
denotes the sum of the `q norms of the rows in a matrix,
W ∈ R(n−1)×(n−1) is a diagonal matrix with the weights
wij’s in the diagonal for (i, j) ∈ ET , and C ∈ R(n−1)×n

is an auxiliary sparse matrix with each row containing only
two non-zero entries 1 and −1 corresponding to an edge in
ET . Therefore, the objective function of the TCC model can
be reformulated as

min
A∈Rn×p

1

2
‖A−X‖2F + λ‖WCA‖1,q. (2)

Now, we propose some useful lemmas.
Lemma 1. C has full row-rank and so rank(C) = n− 1.

Lemma 2. By constructing a matrix D =

[
C
1n

]
∈ Rn×n,

where 1n ∈ R1×n is a row vector with all elements being 1,
then rank(D) = n and hence D is invertible.

Based on Lemma 1 and 2, let[
B
η

]
= Γ = DA =

[
CA
1nA

]
∈ Rn×p, (3)

where B ∈ R(n−1)×p and η ∈ R1×p. Then problem (2) can
be rewritten as minΓ

1
2‖X − D−1Γ‖2F + λ‖WB‖1,q . By

defining D1 ∈ Rn×(n−1) and d2 ∈ Rn×1 as [D1 d2] =
D−1, we can proceed as

min
B,η

f(B,η) =
1

2
‖X− (D1B + d2η) ‖2F + λ‖WB‖1,q.

Now by setting ∂f
∂η = 0, the solution of η is given by

η∗ =
(
dT2 d2

)−1

dT2 (X−D1B
∗). (4)

Note that dT2 d2 is a scalar. By plugging Eq. (4) back into
f(B,η), we can rewrite problem (2) as

min
B∈R(n−1)×p

1

2
‖X̃− D̃B‖2F + λ‖WB‖1,q, (5)

where I denotes an identity matrix with appropriate
size, X̃ =

(
I− 1

dT
2 d2

d2d
T
2

)
X ∈ Rn×p, and D̃ =(

I− 1
dT

2 d2
d2d

T
2

)
D1 ∈ Rn×(n−1). The solution of prob-

lem (5) has an affine relationship with the solution of prob-
lem (2), where A∗ = D−1Γ∗ and Γ∗ can be obtained from
B∗ based on Eqs. (3) and (4). In order to find the sufficient
condition that guarantees some data points to be grouped
into a cluster, we derive the dual form of problem (5) as1

min
Θ∈Rn×p

g(Θ) =
λ2

2

∥∥∥∥∥Θ− X̃

λ

∥∥∥∥∥
2

F

− ‖X̃‖2F ,

s.t.
∥∥∥d̃rΘ∥∥∥

q̄
≤ wr, r = 1, · · · , n− 1, (6)

where Θ ∈ Rn×p is the dual variable, the index r corre-
sponds to a pair of indices (i, j) denoted by r ↔ (i, j), wr
is equal to wij , d̃r is the rth row of D̃T , and q̄ = q

q−1 . The
KKT conditions for problem (5) or (6) include

λΘ∗ = X̃− D̃B∗,

d̃rΘ
∗ =

{
β∗r
‖β∗r‖q̄

, if β∗r 6= 0, (i.e., αi 6= αj),

u with ‖u‖q̄ ≤ wi, if β∗r = 0, (i.e., αi = αj),

(7)

where r ↔ (i, j) and β∗r is the rth row of B∗. Eq. (7) sug-
gests a sufficient condition to determine whether two data
points will be clustered by the TCC method as∥∥∥d̃rΘ∗∥∥∥

q̄
< wr ⇒ β∗r = 0⇔ αi = αj . (R1)

αi = αj , αj = αk ⇒ αi = αk. (R2)

1Please refer to the supplementary material (http://www.stat.rutgers.
edu/home/lhan/) for the details.



According to rules (R1) and (R2), if two data points xi and
xj are grouped by the TCC method which is equivalent to
β∗r = 0, the corresponding edge in the tree is useless and
can be eliminated since we will treat αi and αi as the same
variable. Unfortunately, using rule (R1) is not feasible since
we do not know the optimal solution Θ∗ and neither does
rule (R2).

Inspired by the feature screening methods (Wang et al.
2013; Wang, Wonka, and Ye 2014; Wang et al. 2014; Wang
and Ye 2014; Zhao and Liu 2014), we resort to constructing
a feasible region O which contains Θ∗, and then relax rule
(R1) as

sup
Θ

{∥∥∥d̃rΘ∥∥∥
q̄

: Θ ∈ O
}
< wr ⇒ β∗r = 0. (8)

Eq. (8) provides a sufficient condition to find the edges to be
eliminated. The key here is to construct a tight region O for
Θ∗, since a tighter region O concentrating around Θ∗ will
lead to the elimination of more edges.

Feasible Region Construction

If we are given the optimal Θ∗(λ′) at some regularization
parameter λ′ where the optimal solution Θ∗ is viewed as a
function of the regularization parameter, then we can con-
struct O for Θ∗(λ), where λ < λ′, by utilizing Θ∗(λ′) as
we will see later. This motivates the reduction techniques to
work along a decreasing sequence of regularization parame-
ters, through which the clusterpath can be generated simul-
taneously.

We first determine a constant λmax such that for any regu-
larization parameter λ larger than λmax, the TCC model will
group all the data points into one cluster. λmax can be used
for the first regularization parameter since the corresponding
optimal solution can be obtained analytically without any
solver. For problem (6), we define Fr = {Θ : ‖d̃rΘ‖q̄ ≤
wr} for r = 1, · · · , n − 1 and F = ∩r=1,··· ,n−1Fr as the
intersection of {Fr}n−1

r=1 . It is easy to see that if X̃/λ ∈ F ,
then Θ∗(λ) = X̃/λ. Moreover, from (R1) we can see that if
X̃/λ is an interior point of F then B∗ = 0. Indeed, we have
the following result to determine λmax.

Theorem 1. For problem (6), we define λmax = maxr{ρr :

‖ d̃rX̃
ρr
‖q̄ = wr}. Then the following statements are equiva-

lent: (i) X̃
λ ∈ F ; (ii) Θ∗(λ) = X̃

λ ; (iii) B∗ = 0.

The condition (iii) in Theorem 1 implies that all the data
points are grouped together to a cluster for a regularization
parameter λmax. Now, we can construct O for any λ smaller
than λmax via the following theorem.2

Theorem 2. Suppose that the optimal Θ∗(λ′) is known
for a λ′ ≤ λmax. Let ρr be defined in Theorem (1). For
any 0 < λ < λ′, define d∗ = arg maxd̃r

ρr, e∗ =

2Similar to (Hocking et al. 2011), three values for q (i.e., 1, 2, and∞) are inves-
tigated and our analysis can be easily generalized to a general q.

I
(∣∣∣ d∗X̃
λmax

∣∣∣− ∥∥∥ d∗X̃
λmax

∥∥∥
∞

.
= 0
)

,

n(λ′) =


X̃
λ′ −Θ∗(λ′), if λ′ < λmax,

dT∗ sign
(

d∗X̃
λmax

)
, if λ′ = λmax, q̄ = 1,

dT∗
d∗X̃
λmax

, if λ′ = λmax, q̄ = 2,

eT∗
d∗X̃
λmax

, if λ′ = λmax, q̄ =∞,

and v(λ, λ′) = X̃
λ − Θ∗(λ′), v⊥(λ, λ′) = v(λ, λ′) −

〈v(λ,λ′),n(λ′)〉
‖n(λ′)‖2F

n(λ′), where I(·), | · |, and .
= are element-wise

indicator, absolute, and equivalent operators, and sign(·)
denotes the sign function. Then, we have the following re-
sult: ∥∥Θ∗(λ)− o(λ, λ′)

∥∥
F
≤ R(λ, λ′), (9)

where o(λ, λ′) = Θ∗(λ′) + 1
2v⊥(λ, λ′) and R(λ, λ′) =

1
2

∥∥v⊥(λ, λ′)
∥∥
F

.
Theorem 2 implies that the optimal Θ∗(λ) lies in a ball

depending on Θ∗(λ′) with the center o(λ, λ′) and radius
R(λ, λ′). Therefore, we can directly use the ball to construct
the feasible region O(λ, λ′):
O(λ, λ′) =

{
Θ(λ) :

∥∥Θ(λ)− o(λ, λ′)
∥∥
F
≤ R(λ, λ′)

}
. (10)

Based on the sufficient condition in Eq. (8), we only need to
estimate the following supreme value:

sup
Θ

{∥∥∥d̃rΘ∥∥∥
q̄

: Θ ∈ O(λ, λ′), r = 1, · · · , n− 1

}
. (11)

The Eater Rules
The supreme value can be obtained in the following theorem
which also concludes the Exact Tree Reduction (Eater) rules
finally.
Theorem 3. (Eater Rules) For the TCC model, suppose the
optimal solution Θ∗(λ′) at 0 < λ′ ≤ λmax is known. Let
r ↔ (i, j). Then for 0 < λ < λ′, the edge (i, j) can be
eliminated under a regularization parameter λ, i.e., α∗i =
α∗j , if the following conditions hold:

∥∥∥d̃ro(λ, λ′)
∥∥∥
∞

+R(λ, λ′)‖d̃r‖2 < wr, if q = 1,∥∥∥d̃ro(λ, λ′)
∥∥∥

2
+R(λ, λ′)‖d̃r‖2 < wr, if q = 2,∥∥∥d̃ro(λ, λ′)

∥∥∥
1

+R(λ, λ′)‖d̃r‖2 < wr, if q =∞,
(R1*)

α∗i = α∗k and α∗j = α∗k for some k. (R2*)
Some remarks for the Eater rules: (1) In the Eater rules,

all the conditions can be determined efficiently via only sim-
ple matrix operations on the given data matrix X. This is
promising since we can directly determine which data points
will be clustered together for a given λ without solving
the objective function. The only requirement is the knowl-
edge of Θ∗(λ′) at some λ′ > λ. (2) In order to generate
the clusterpath, multiple TCC models need to be learned
along a decreasing sequence of regularization parameters
λ0 > λ1 > · · · > λt where λ0 = λmax. The proposed re-
duction techniques can work based on this sequence, since
Θ∗(λi) can be used to do the reduction for the regulariza-
tion parameter λi+1. Moreover, at the beginning, both λmax

and Θ∗(λmax) can be analytically computed according to
Theorem 1.



Graph Reduction for CGCC
In this section, we present reduction techniques for the
CGCC model. The cyclic graph is denoted by G = (V, EC)
and C ∈ Rm×n is defined similar to C, where m, the num-
ber of edges, is not smaller than n. Then we have the follow-
ing properties for C.

Lemma 3. C ∈ Rm×n is a rank-deficient matrix, where
rank(C) < n ≤ m.

Since C is rank-deficient, we cannot transform the objec-
tive function of the CGCC model in a similar way to the
TCC model, and therefore we investigate the original prob-
lem (1) instead.

The Dual Form for The CGCC Model
Problem (1) can be reformulated as

min
A∈Rn×p

1

2
‖A−X‖2F + λ‖WCA‖1,q, (12)

where W is the corresponding diagonal weight matrix. The
Lagrangian dual for problem (12) is

min
Φ∈Rm×p

h(Φ) =
λ2

2

∥∥∥∥CT
Φ− X

λ

∥∥∥∥2

F

− ‖X‖2F ,

s.t. ‖φr‖q̄ ≤ wr, r = 1, · · · ,m, (13)

where φr is a row of Φ. The KKT conditions for problem
(13) include

X = A∗ + λC
T
Φ∗, CX = CA∗ + λCC

T
Φ∗, (14)

φ∗r =

{
[CA∗]r
‖[CA∗]r‖q̄

, if [CA∗]r 6= 0 (i.e., αi 6= αj),

u with ‖u‖q̄ ≤ wr, if [CA∗]r = 0 (i.e., αi = αj),
(15)

where r ↔ (i, j). According to Eq. (15), we obtain a suffi-
cient condition as

‖φ∗r‖q̄ < wr ⇒ [CA∗]r = 0⇔ αi = αj . (R3)

Similar to TCC, we want to construct a feasible region G
containing Φ∗, and then relax rule (R3) as

sup
Φ
{‖φr‖q̄ : Φ ∈ G} < wr ⇒ [CA∗]r = 0. (16)

In order to construct G, similar to the TCC model, we first
need to seek a constant λmax under which the CGCC model
can group all the data points into a cluster. We define F as
F = {Φ : ‖φr‖q̄ < wr, r = 1, · · · ,m}. For Φ ∈ F , the
optimality condition of problem (13) implies that

CC
T
Φ∗ =

CX

λ
. (17)

It is easy to prove that CC
T

is rank-deficient and it is not
invertible since C ∈ Rm×n is rank-deficient. As a conse-
quence, problem (13) can have multiple solutions and so
does Eq. (17), bringing difficulties to find λmax. Instead of
deriving exact reduction rules for the CGCC model, we pro-
pose to seek for inexact reduction rules, which is called in-
exact Cyclic-Graph Reduction (Cigar) rules.

The Cigar Rules
We propose to relax the dual problem (13) as

min
Φ

h(Φ) =
λ2

2

∥∥∥∥CT
Φ− X

λ

∥∥∥∥2

F

− ‖X‖2F +
δλ2

2
‖Φ‖2F ,

s.t. ‖φr‖q̄ ≤ wr, r = 1, · · · ,m, (18)

where δ is a small positive constant. Problem (18) is strictly
convex. D is defined as D = CC

T
+ δI ∈ Rm×m and is

positive definite. Then we can determine λmax in the follow-
ing theorem.
Theorem 4. For the relaxed dual problem (18), we define
λmax = maxr{ρr : ‖drY

ρr
‖q̄ = wr}, where dr denotes the

rth row of the inverse matrix D
−1

and Y = CX. Then
the following statements are equivalent: (i) D

−1
Y

λ ∈ F ; (ii)

Φ
∗
(λ) = D

−1
Y

λ .

Then we can construct the feasible region for Φ
∗

based
on the following theorem.

Theorem 5. Suppose that Φ
∗
(λ′) is known for λ′ < λmax.

For any 0 < λ < λ′, we define n(λ′) = Λ−1Y
λ′ −ΛΦ

∗
(λ′),

v(λ, λ′) = Λ−1Y
λ − ΛΦ

∗
(λ′), v⊥(λ, λ′) = v(λ, λ′) −

〈v(λ,λ′),n(λ′)〉
‖n(λ′)‖2F

n(λ′). Then, we have the following result:∥∥∥ΛΦ
∗
(λ)− o(λ, λ′)

∥∥∥
F
≤ R(λ, λ′), if λ′ < λmax, (19)

where Λ = D
1
2 , o(λ, λ′) = ΛΦ

∗
(λ′) + 1

2v⊥(λ, λ′), and
R(λ, λ′) = 1

2

∥∥v⊥(λ, λ′)
∥∥
F

.
Finally, we obtain the Cigar rules for the CGCC model.

Definition 1. (Cigar Rules) For the CGCC problem, sup-
pose the optimal solution Φ

∗
(λ′) of problem (18) is given

where 0 < λ′ < λmax. Let r ↔ (i, j) and let ζr be the
rth row of Λ−1. Then for 0 < λ < λ′, the edge (i, j) can
be eliminated under λ, i.e. xi and xj clustered (inexactly),
which is denoted by α∗i ' α∗j , if the following conditions
hold: ‖ζro(λ, λ′)‖∞ +R(λ, λ′)‖ζr‖2 < wr, if q = 1,

‖ζro(λ, λ′)‖2 +R(λ, λ′)‖ζr‖2 < wr, if q = 2,
‖ζro(λ, λ′)‖1 +R(λ, λ′)‖ζr‖2 < wr, if q =∞,

(R3*)

α∗i ' α∗k and α∗j ' α∗k for some k. (R4*)

Some remarks for the Cigar rules: (1) The Cigar rules
are inexact, since problem (18) is not the dual form of prob-
lem (1). When we use the Cigar rules, some edges may be
mis-eliminated and as a consequence, some data points may
be mis-clustered. (2) The parameter δ in problem (18) plays
an important role, since λmax depends on the value of δ. Ac-
tually, we can determine δ empirically and we put the details
in the supplementary material. (3) When the number of rows
in C, i.e. m, is large, directly calculating D

−1
, Λ, and Λ−1

is computationally demanding. However, due to the specific
form of D, there exists efficient ways to compute those ma-
trices and we put the details in the supplementary material.
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Figure 1: The performance of the Eater rule on synthetic data
(n=200). The first and second rows report the results in the
Halfmoon and Spiral data respectively.

Experiments
In this section, we evaluate the Eater and Cigar rules on both
synthetic and real-world datasets. For the TCC model, we
use the the tree structure generated by the MST algorithm,
since the MST clustering methods can deal with complex
cluster structure. For the CGCC model, we add edges to the
MST to construct cyclic graphs, in which the Cigar rule is
evaluated. In order to measure the performance of the reduc-
tion rules, we define the following metrics: data reduction
rate (DRR) = 1− n̂c/n, data fusion rate (DFR) = 1−n∗c/n,
exact edge reduction rate (EERR) = |Êre|/|E∗re|, mistaken
edge-elimination rate (MEER)=|Êre ∩ (E − E∗re)|/|Êre|,
where n̂c is the number of distinct αi’s (number of clusters)
obtained by the Eater/Cigar rule, n∗c is the true number of
distinct αi’s detected by some solver, Êre is the set of re-
moved edges by Eater/Cigar rules, and E∗re is the true set of
removed edges. The MEER is specially defined for the Cigar
rule since the Eater rule is exact.

Similar to (Hocking et al. 2011), the weight before any
data pair (i, j) is defined as wij = exp

(
−γ‖xi − xj‖22

)
,

and we use γ = 10/d̄2, where d̄ is the average `2 distance
for all possible pairs of data points. In the experiments, q
is set to be 2. We use the FISTA (Beck and Teboulle 2009)
algorithm to solve problem (5) for the TCC model. For the
CGCC model, we use the ADMM method to solve it. All the
experiments are conducted on a machine with Intel i7 CPU
and 8GB RAM under the Matlab 2013b environment.

Experiments on Synthetic Data
We investigate two widely used synthetic datasets in the
clustering literature (Grygorash, Zhou, and Jorgensen 2006;
Wang, Wang, and Wilkes 2009), i.e. the halfmoon and spiral
datasets. In each dataset, we generate n data points where n
is equal to 200. The Eater and Cigar rules are tested on a se-

quence of the regularization parameter with 500 values for λ
equally spaced between λmax and λmax/500 and the cluster-
path can be generated simultaneously. In the following ex-
periments, we use CGCC-k to denote the CGCC model on a
cyclic graph generated from the MST by adding k(n−1) ad-
ditional edges with largest weights. In our experiments, we
find that all the TCC and CGCC models can correctly detect
the clusters in the data, and the clustering performance of
these models is reported in the supplementary material. In
the following, we focus on evaluating the proposed rules.

Table 1: Running Time (in seconds) on the synthetic data
based on the Eater rule. E+S denotes the total time cost of
using the Eater rule and the solver.

Data Solver Eater E+S Speedup
halfmoon (n=200) 134.4 0.5 21.6 6.2

spiral (n=200) 176.4 0.6 31.3 5.6

Fig. 1 shows the performance of the Eater rule in terms
of DRR, DFR and EERR when n equals 200. In Figs. 1(a)
and 1(c), the closer the DRR curve is to the DFR curve, the
better performance the Eater rule gains, because the region
below the DRR curve denotes the fraction of data reduction
that the Eater rule can achieve. Note that if the rule is exact,
the DRR curve will never exceed the DFR curve. By com-
paring the DRR and DFR curves, we can see that a large
proportion of the data points are clustered via the Eater rule.
The blue regions in Figs. 1(b) and 1(d) represent the exact
edge reduction rate. We can see that at least over 40% edges
can be eliminated for each λ/λmax, and the average fraction
of the eliminated edges is around 70%. Those results verify
that the Eater rule is able to detect the data points from the
same cluster without learning the TCC model. Table 1 shows
the running time for generating the clusterpath by using the
TCC model, where the use of the Eater rule can achieve 5-
6 times speedup compared with solving the TCC problem
directly.

Fig. 2 shows the performance of the Cigar rule in terms of
DRR, DFR, EERR and MEER, when the size of the data is
200. Different from the Eater rule, the Cigar rule may mis-
cluster some data points as analyzed previously. The red re-
gions in Figs. 2(c), (f), (i) and (l) denote the fraction of mis-
taken eliminated edges under different settings. From the re-
sults, we observe that some mistakes are made by the Cigar
rule when λ is small. Moreover, the Cigar rule becomes less
effective in terms of the EERR when λ is small. On the con-
trast, when λ/λmax > 0.3, the Cigar rule can correctly de-
tect the clusters. Based on the DFR curve, we see that when
λ is small, the data fusion rate varies rapidly, implying that
the clusterpath changes frequently. This is a possible reason
that the Cigar rule becomes less effective for small λ. Table
2 records the running time of different methods and we find
that the Cigar rule can achieve 2-7 times speedup.

Iris Data & Vehicle Data
We test the Eater and Cigar rules on two UCI datasets, i.e.,
the iris and vehicle datasets.3 The iris data contains 150 data

3
https://archive.ics.uci.edu/ml/datasets.html
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Figure 2: The performance of the Cigar rule on synthetic data (n=200). The first and second rows denote the results on the
halfmoon and spiral datasets respectively. In each row, the first three figures denote the results for the CGCC-1 model while the
rest is for the CGCC-2 model.
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Figure 3: The performance of the Eater rule on the iris and
vehicle data. The first and second rows report the results in
the Iris and Vehicle data respectively.

points and each data point has 4 attributes, while the vehi-
cle data contains 946 data points, each of which has 18 at-
tributes. In the iris data, we first test the Eater rule along
a sequence of 360 values. The sequence consists of two
parts, where the first subsequence contains 60 values equally
spaced on the logarithmic scale from 1

1.1 to 1
1.160 and the sec-

ond one contains 300 values equally spaced on the residual
interval ( 1

1.160 , 0), since empirically we find that the clus-
terpath changes frequently when λ/λmax < 1

1.160 . For the
CGCC model, we generate a sequence of λ identical to that
in the synthetic data. In the vehicle data, we test the two
rules along a sequence of 100 values equally spaced on the
logarithmic scale of λ/λmax from 1

1.1 to 1
1.1100 .

Fig. 3 shows the performance of the Eater rule. In Figs.
3(b) and 3(d), we observe that the Eater rule can consistently
achieve 80%-90% EERR, resulting in very effective data re-

Table 2: Running Time (in seconds) on the synthetic data
based on the Cigar rule. C+S means the total time cost of
using the Cigar rule and the solver.

Data Model Solver Cigar C+S Speedup
Halfmoon CGCC-1 189.3 8.1 25.0 7.6
(n=200) CGCC-2 201.6 15.1 42.9 4.7
Spiral CGCC-1 202.2 6.9 85.2 2.4

(n=200) CGCC-2 233.4 13.9 88.2 2.6

Table 3: Running time (seconds) on the real-world datasets.
R+S means the total time cost of using the reduction rules
and the solver.

Data Model Solver Rule R+S Speedup
TCC 247.6 0.3 28.5 8.7

Iris CGCC-1 310.9 7.1 45.4 6.8
CGCC-2 388.1 12.8 58.7 6.6

TCC 1399.5 2.6 168.7 8.3
Vehicle CGCC-1 2625.7 31.4 877.5 3.0

CGCC-2 3473.7 44.4 1271.4 2.7

duction as shown in Figs. 3(a) and 3(c). Fig. 4 shows the
performance of the Cigar rule for the CGCC model. In Figs.
4(b), (e), (h) and (k), although the Cigar rule only eliminates
a small fraction of the edges when λ/λmax < 0.1, it is al-
most exact as shown in Figs. 4(c), (f), (i) and (l), implying
that the Cigar rule is more effective in the real-world datasets
than the synthetic datasets. Table 3 shows the running time
of different methods in the two datasets. From the results,
we can see that the proposed rules can achieve around 2-9
times speedup. Moreover, similar to the results on the syn-
thetic data, the Eater rule is much more efficient than the
Cigar rule, but the computation cost for both the rules can
be negligible compared with the time cost of the solver.

Conclusion and Future Work
In this paper, we developed novel reduction techniques for
the graph-based convex clustering model to eliminated a
fraction of edges in the graph before solving it. In the future
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Figure 4: The performance of the Cigar rule on the iris and vehicle data. The first and second rows denote the performance in
the iris and vehicle data respectively. In each row, the first three figures denote the results for the CGCC-1 model while the rest
is for the CGCC-2 model.

study, we are interested in finding exact rules for the CGCC
model and applying the reduction techniques to other appli-
cations with large-scale data.
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