
Supplementary Material for ‘Learning
Multi-Level Task Groups in Multi-Task

Learning’
A. Some Basic Lemmas
Before presenting the proofs in the main paper, we first pro-
vide some basic lemmas.
Lemma 1 ‖CWT

h ‖1,2 ≤ (m− 1)
√
d‖Wh‖F .

Proof: Note that for any matrix Q ∈ Rr1×r2 , ‖Q‖1,2 ≤√
r‖Q‖F , where r is the rank of Q and we have r ≤ r1, r ≤

r2. Based on the definition of the matrix C, we have

‖CWT
h ‖1,2 =

1

2

m∑
i=1

m∑
j 6=i

‖wh,i −wh,j‖2

≤ 1

2

m∑
i=1

m∑
j 6=i

(‖wh,i‖2 + ‖wh,j‖2)

= (m− 1)‖WT
h ‖1,2 ≤ (m− 1)

√
d‖Wh‖F ,

in which we complete the proof. �

Lemma 2 For any matrix pair Q, Q̂ ∈ Rd×m, we have

‖CQT ‖1,2 − ‖CQ̂T ‖1,2 ≤ ‖(CQT −CQ̂T )E(Q)‖1,2.

The proof of Lemma 2 is the same with the proof of Lemma
1 in (Gong, Ye, and Zhang 2012) and is omitted here.
Lemma 3 Assume that the training data is normalized with
zero mean and unit variance. For h ∈ NH , if the regular-
ization parameter λh satisfies Eq. (14), then with probabil-
ity of at least 1 − exp(− 1

2 (δ − dm log(1 + δ
dm ))), for an

optimal solution Ŵ =
∑H
h=1 Ŵh of problem (3) and any

W =
∑H
h=1 Wh ∈ Rd×m, we have

1

mn
‖XT vec(Ŵ)− vec(F∗)‖22 ≤

1

mn
‖XT vec(W)− vec(F∗)‖22

+ (m− 1)
√
d

H∑
h=1

λh(θh + 1)‖
(
Ŵh −Wh

)D(Wh)

‖F . (20)

B. Long Proofs
Proof of Lemma 3: Since Ŵ is an optimal solution of
problem (3), for any W we have

1

mn

m∑
i=1

‖XT
i

H∑
h=1

ŵh,i − yi‖22 ≤
1

mn

m∑
i=1

‖XT
i

H∑
h=1

wh,i − yi‖22

+

H∑
h=1

λh
(
‖CWT

h ‖1,2 − ‖CŴT
h ‖1,2

)
Substituting Eq. (13) into this inequality, we can obtain

1

mn

m∑
i=1

‖XT
i

H∑
h=1

ŵh,i − f∗i ‖22 ≤
1

mn

m∑
i=1

‖XT
i

H∑
h=1

wh,i − f∗i ‖22

+

H∑
h=1

λh
(
‖CWT

h ‖1,2 − ‖CŴT
h ‖1,2

)
+

2

mn

H∑
h=1

〈
Z,Ŵh −Wh

〉
, (21)

where Z = [X1ε1, · · · ,Xmεm] ∈ Rd×m with its (j, i)th el-
ement computed as zji =

∑n
k=1 x

(i)
ji εki and x(i)jk denotes the

(j, i)th element in Xi for the ith task. Since x
(i)
j is normal-

ized with zero mean and unit variance and εji ∼ N (0, σ2),
we have

zji ∼ N (0, σ2).

By defining a variable vji = 1
σ zji, we can get that vji ∼

N (0, 1). Thus we can get that a variable uwith the definition
as

u =

d∑
j=1

m∑
i=1

v2ji =
1

σ2
‖Z‖2F

follows a chi-squared distribution with the degree of free-
dom as dm. According to the Wallace inequality (Wallace
1959), for any δ > 0 we have

Pr(u ≥ dm+ δ) ≤ exp

(
−1

2

(
δ − dm log

(
1 +

δ

dm

)))
.

Since u = 1
σ2 ‖Z‖2F , we obtain that

Pr
(

2

mn
‖Z‖F ≤

2σ

mn

√
dm+ δ

)
= Pr (u ≤ dm+ δ)

≥ 1− exp

(
−1

2

(
δ − dm log

(
1 +

δ

dm

)))
.

(22)

Based on Assumption 1 and Eq. (22), with probability of at
least 1− exp(− 1

2 (δ − dm log(1 + δ
dm ))) we have

2

mn

H∑
h=1

〈
Z,Ŵh −Wh

〉
≤ 2

mn
‖Z‖F

H∑
h=1

‖Ŵh −Wh‖F

≤ 2σ

mn

√
dm+ δ

H∑
h=1

θh‖
(
Ŵh −Wh

)D(Wh)

‖F .

(23)
Moreover, by using Lemma 1 and 2, we have

‖CWT
h ‖1,2−‖CŴT

h ‖1,2 ≤ ‖
(
CWT

h −CŴT
h

)E(Wh)

‖1,2

≤ (m− 1)
√
d‖
(
Wh − Ŵh

)D(Wh)

‖F . (24)

Combing Eqs. (21), (23), and (24), with probability of at
least 1− exp(− 1

2 (δ − dm log(1 + δ
dm ))) we have

1

mn
‖XT vec(Ŵ)− vec(F∗)‖22 ≤

1

mn
‖XT vec(W)− vec(F∗)‖22

+

H∑
h=1

(
2σ

mn

√
dm+ δθh + (m− 1)

√
dλh

)
‖
(
Ŵh −Wh

)D(Wh)

‖F .

Plugging Eq. (14) into the above equation, we complete the
proof. �

Proof of Theorem 1: Let Wh = W∗
h for h ∈ NH in Eq.

(20) and so ∆h = Ŵh −W∗
h. Then we obtain

1

mn
‖XT vec(∆)‖22 ≤ (m− 1)

√
d

H∑
h=1

λh(θh + 1)‖∆D(Wh)
h ‖F .

(25)



Under Assumption 1, we have

‖∆D(Wh)
h ‖F ≤

‖XTvec(∆)‖2
βh
√
mn

(26)

By substituting Eq. (26) into Eq. (25), we obtain

‖XTvec(∆)‖2 ≤ (m− 1)
√
mndH. (27)

Therefore we can directly get Eq. (15) from Eq. (27). Since
from Assumption 1, we have

‖Ŵh −W∗
h‖F = θh‖

(
Ŵh −W∗

h

)D(Wh)

‖F ,

‖CŴT
h−C(W∗

h)T ‖1,2 = γh‖
(
CŴT

h −C(W∗
h)T
)E(Wh)

‖1,2.

Combing Eqs. (24), (26) and (15), we can easily prove Eqs.
(16) and (17).

To prove Êh = E(W∗
h), we need to prove the following

two statements:

∀(i, j) ∈ Êh ⇒ (i, j) ∈ E(W∗
h), (28)

∀(i, j) ∈ E(W∗
h)⇒ (i, j) ∈ Êh. (29)

We first prove Eq. (28) by contradiction. Assume there exists
a pair (i′, j′) such that (i′, j′) ∈ Êh, but (i′, j′) 6∈ E(W∗

h).
Then according to the definitions of Êh and E(W∗

h), we
have

‖
(
CŴT

h −C(W∗
h)
T
)(i′,j′)

‖2 = ‖
(
CŴT

h

)(i′,j′)
‖2

>
γh(m− 1)2dH

βh
,

which contradicts with the proved Eq. (17), so we prove Eq.
(28). Next we prove Eq. (29) by contradiction. Similarly, as-
sume there exists (i′′, j′′) ∈ E(W∗

h), but (i′′, j′′) 6∈ Êh.
Since (i′′, j′′) 6∈ Êh, based on the definition of Êh in Eq.
(19) we have

‖
(
CŴT

h

)(i′′,j′′)
‖2 ≤

γh(m− 1)2dH
βh

.

Furthermore, using the condition in Eq. (18), we have

‖
(
CŴT

h −C(W∗
h)
T
)(i′′,j′′)

‖2 ≥ ‖
(
C(W∗

h)
T
)(i′′,j′′)

‖2

− ‖
(
CŴT

h

)(i′′,j′′)
‖2 >

γh(m− 1)2dH
βh

.

which contradicts with Eq. (17). So Eq. (29) is correct,
which completes the proof. �

Details and Proof for Remark 2: In the robust multi-task
learning (rMTL) (Gong, Ye, and Zhang 2012), the parame-
ter matrix W is decomposed into two components W1 and
W2. The performance bound of their model is

‖XT vec
(
Ŵ(r)

)
− vec(F∗)‖2 ≤

√
mn

(
2η1
√
r

κ1
+

2η2
√
c

κ2

)
,

(30)

where Ŵ(r) is the estimator from rMTL, and η1 and η2
are the regularization parameters that satisfy η1, η2 ≥

2σ
mn

√
dm+ δ, W∗

1 and W∗
2 are the ground truth for W1 and

W2 respectively, r is the number of non-zero rows in W∗
1 ,

c is the number of non-zero columns in W∗
2 , and κ1 and κ2

are also some parameters defined in the restrict eigenvalue
assumption as

κ1 = min
∆1 6=0

‖XT vec(∆)‖2
√
mn‖∆J (W∗1 )

1 ‖F
, κ2 = min

∆2 6=0

‖XT vec(∆)‖2
√
mn‖∆J (W∗T2 )

2 ‖F
.

By denoting by J (Q) the set of the indices of the non-
zero rows in a matrix Q, we have r = |J (W∗

1)| and
c = |J (W∗T

2 )| where | · | denotes the cardinality of a set.
By setting the number of task levelsH to be 2 in our MeTaG
model, we have the bound as

‖XT vec(Ŵ)− vec(F∗)‖2

≤ (m− 1)
√
mnd

(
λ1(θ1 + 1)

β1
+
λ2(θ2 + 1)

β2

)
.

(31)

A direct comparison between the two bounds in Eqs. (30)
and (31) is difficult due to the use of different projection
sets J (·) and D(·). However, we can compare those two
bounds in the worst case where Jc(W∗

1) = ∅, Jc(W∗T
2 ) =

∅, Dc(W
∗
1) = ∅, and Dc(W

∗
2) = ∅. In the worst case, we

can get that κ1 = β1, κ2 = β2, r = d, c = m, θ1 = 1 and
θ2 = 1. Then the bound in Eq. (30) can be rewritten as

‖XT vec
(
Ŵ(r)

)
− vec(F∗)‖2

= O

(
4σ
√
dm+ δ√
mn

(√
d

β1
+

√
m

β2

))
,

(32)

and the bound in Eq. (31) can be rewritten as

‖XT vec(Ŵ)− vec(F∗)‖2 = O

(
4σ
√
dm+ δ√
mn

(
1

β1
+

1

β2

))
.

(33)
By comparing those two bounds, we can observe that the
bound of our MeTaG method is considerably better than that
of the rMTL method in the worst case especially when the
feature dimension d and number of tasks m are large. �


