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AbstractÐ This research presents a novel Collective Robotic
Construction (CRC) system named RECCraft. The RECCraft
hardware system is composed of the mobile manipulation
vehicles, the cubic blocks, and the folding ramp blocks. Solid
connection and easy removal of the blocks are achieved by
an electropermanent magnet and silicon steel sheets. With one
degree of freedom (DOF) lifting manipulator, the robot can
carry a block 3.7 times its volume. An active folding ramp block
can provide a robust passage to the upper level for the robot.
Our study focuses on systemic improvement of the construction
speed and reliability of the robotic construction system. Visual
perception system realized by Apritag is adopted, featured
by convenient deployment and high precision, to provide a
reliable guarantee for robotic construction. RL-based planner
provides end-to-end solution for planning tasks of building
multi-layer constructions, which is validated by simulation plat-
form and real prototype. Compared with construction speed of
existing robotic construction systems, our proposed RECCraft
system achieves state-of-the-art level. The robot builds a 2-
layer construction by RL-based planner in 4 minutes and 16
seconds, which achieves construction volumetric throughput of
6.7×105mm3/s.

I. INTRODUCTION

Collective construction is a common activity in both nature

and human society. The worker bees collect raw materials

and build a large hive composed of thousands of cells

stacked in multiple layers through cooperation. Via teamwork

and advanced tools, human beings have been able to build

incredibly large buildings compared to human size. Due to

the danger of construction and the rising cost of labor force,

Collective Robotic Construction (CRC) is believed to be able

to improve automation of construction activities. On the other

hand, we notice that in the popular virtual game MineCraft,

players build various customized virtual constructions using

only universal unit blocks as the very fundamental material.

This inspires us that the robotic construction platforms can

potentially build a bridge from the construction in the virtual

world (like MineCraft) to that of the real world.

Based on this motivation, we propose a novel autonomous

CRC platform which we refer to as Reliable and Efficient

CRC Craft (RECCraft). The target of this project is to build a

general hardware and software platform for studies of CRC,

with high efficiency and robustness. Key components of the

hardware platform include a mobile manipulation builder

and two types of heterogeneous building blocks - the cubic

block and the folding ramp block. In addition to serving

as building materials, the ramp blocks also provide reliable
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passages for the builders to reach the upper floor of the

construction, which demonstrates cooperation between the

builder and building materials. The hardware system focuses

on improving construction throughput and manipulation pre-

cision of the robotic construction system. As shown in Fig. 1,

the builder adopts an 1-DOF lifting mechanism for picking

the building blocks, facilitating behaviors of picking and un-

loading the building blocks. Then, high construction speed of

manipulation is realized by sufficient loading capacity of the

builder robot, which can pick a block 3.7 times its volume.

This is similar to transport behavior of insects in nature.

Mechanical characteristics of the block and the manipula-

tor achieve passive positioning alignment of manipulation

actions, which increases manipulation precision. Next, we

propose to further develop the scalability of the construction

system. In this work, we consider construction tasks, while

our system is general to accomplish other specified tasks.

Specifically, we design a RECCraft simulator via the Bullet

engine as a digital copy of the real system. In the simulator,

it is easy to design diverse problems covering cooperative,

competitive, and co-competitive mixed tasks. Reinforcement

learning (RL) algorithms are then applied to train robot’s

policy in the simulator via an end-to-end scheme, and the

policy is then deployed in real robot directly, allowing the

robot swarm to build construction much more larger than the

robot’s size and achieve other complex tasks.

The paper is organized as follows. Section II presents

the related work of the CRC system. Section III proposes

the concept of the RECCraft system, including three parts:

connection/disassembly of blocks, climbing up/down multi-

layer blocks as well as picking/placing a block. Section

IV presents details of the hardware system. Section V

presents the visual localization system. High-level planning

is presented in Section VI. In Section VII, construction

speed and reliability of the proposed RECCraft system are

carefully validated, and demonstrations of building multi-

layer constructions are presented. Section VIII concludes the

work.

II. RELATED WORK

In CRC literature, researchers have proposed various

building elements and builder robots to accomplish construc-

tion tasks. Early works of CRC solve the 2D construction

of a barrier or a wall [1], [2]. Some recent works develop

CRC platforms that are capable of building 2.5D or 3D con-

struction using discrete materials such as bricks, pockets and

struts [3]±[5] or continuous building elements such as rope



Fig. 1: Overview of the RECCraft platform. The robot is

climbing a ramp block and building 3-level construction

of blocks. The inner image presents 3 components of the

RECCraft hardware system: the mobile manipulation vehicle,

the cubic block, and the folding ramp block.

and polyurethane foam [6], [7]. Normally, discrete building

materials are picked and placed by a specialized manipulator

and the continuous building elements are normally ejected

by an extrusion mechanism. These two kinds of building

elements have their own advantages and shortages. It is

possible to build amorphous construction or fill gaps of the

existing structure with continuous material [7]. However,

construction removal is much difficult for such building

material.

Mobility of reaching upper floor and robust manipulation

are important [8] for building multi-layer construction. Both

aerial and ground vehicles have been used to serve as

transportation tools. Some studies present that the aerial vehi-

cle demonstrates advantage on efficient obstacle-overcoming

ability [5], [7]. However, limited payload of the aerial vehi-

cle causes lightweight and comparably small size of building

materials. Existing ground vehicles for 2.5D or 3D construc-

tion includes wheel-legged vehicle [9], bipedal robot [10] and

wheeled robot with assistance of ramp or bridge [11], [12].

Wheel-legged vehicle has good stair-climbing ability, while

the stability and success rate of climbing are unsatisfactory.

Ramp seems to be a safe and efficient way for climbing [7],

[11], [13]. The approach [6] designs a mobile robot that can

build a ramp structure by extrusion machine to climb a stair.

Another recent work [13] proposes a mobile manipulation

robot for unstructured environment, which modifies shape of

unstructured terrain.

In addition, environment perception and communication

are important concepts that help robots perceive their ex-

act localization. In some previous studies, robots exploit

high-resolution sensors and high-speed communication to

simulate how animals perceive and communicate with the

environment. There are different positioning methods for

CRC systems such as global sensors [14], [15] and common

templates [1]±[4], [16]. In particular, [17] and [14] both use

an overhead motion capture system namely Vicon to get

the marked object’s position, which is quite convenient but

limits the application environment. [3] shows how robots

can build a barrier along with heterogeneous template in

the environment. The collective structure in [16] provides

a reference for robots to keep track of their movements.

Compared with the above approaches, the principle con-

tributions of the proposed RECCraft system include: (1)

picking/placing a block realized by 1-DOF manipulation

mechanism, resulting in high throughput based on the large

block size and facilitation of manipulation; (2) convenient

assembly and disassembly of the blocks; (3) foldable ramp

block design which provides robust access among different

floors of construction for the robot.

III. CONCEPT OF THE SYSTEM

There are three basic units in the RECCraft system,

including the mobile manipulation robot, the cubic block,

and the active folding ramp block. They cooperate to build

multi-layer construction and improve the construction speed

and robustness. In our design, the building block is no longer

a passive construction unit that it can change its form from

a cubic block to a ramp to support the mobile manipulation

vehicle accessing to the upper level of construction.

A. Assembly and Disassembly of The Blocks

Electromagnets and silicon steel sheets are respectively

arranged on four corners of the lower surface and upper

surfaces of the cubic block, as shown in Fig. 2. Connection of

the upper and lower blocks is realized by magnetic attraction

of the electromagnets and the silicon steel sheets. Magneti-

zation and demagnetization are energized by manipulation

of the mobile vehicle. Since the number of the cubic blocks

is large, this is a more economical way compared to placing

batteries in each block. Most of the time, electromagnets

on blocks are magnetic to keep connection between blocks.

When the blocks are separated, the electromagnets are pow-

ered and changed to demagnetization state. As a result, the

electropermanent magnet meets this magnetic properties.

Fig. 2: Concept of assembly of two cubic blocks.

B. Manipulation

As shown in Fig. 3, we design tunnel openings on each

vertical side of the block to let the robot pass through. When

the mobile manipulation vehicle reaches the bottom center

of the cubic block, the lifting mechanism lifts the block and

holds it tightly through the attraction of electropermanent

magnet. It has the similar lifting behavior to the Kiva

robotic platform [18]. The process of picking and placing

a block is accurate and efficient thanks to the 1-DOF lifting

manipulation. The block is 3.7 times the size of the robot,

which highly increases construction throughput.



Fig. 3: Concept of picking a block by lifting manipulation.

C. Climbing

Ramp block provides passage to higher level of the con-

struction for the robot. Similarly, the mobile vehicle can lift

the folding ramp block and transport it to the target location.

Different from the cubic block, the ramp block is powered

by inside battery, and it can actively change its status from

a folded state (a shape with the same size of a cubic block)

to an unfolded state, serving as a ramp with an inclination

of about 15°, as shown in Fig. 4. When the mobile vehicle

is carrying a ramp block, folded state of the ramp block

avoids collision with other existing structure. Then, the center

of mass (COM) of the folded ramp block is nearly on the

same vertical line as the COM of the mobile vehicle, which

improves the stability of transportation.

Fig. 4: Concept of climbing to higher level by folding ramp

block.

D. Visual localization

Localization system are characterized with the following

major points: easy deployment, robustness, and high pre-

cision. The local camera on the mobile vehicle is adopted

instead of the global sensor, which makes it possible to

arrange this robotic platform outdoors. Just We only need

to place the aluminum bases with Apritags in some specific

order on the ground to let the entire system work. It is

simple and efficient to deploy the base ground. Moreover,

the smaller Apritags on the block is used for local precise

positioning. For structural scenes, such as cubic blocks or

ramp blocks, line patrol is deployed to keep the vehicle

along the center line. After a long period of testing, the

localization system has shown sufficient accuracy to ensure

the robustness of the whole system.

IV. HARDWARE

TABLE I: Specifications of the RECCraft hardware platform.

Items Features

Size of the vehicle 235mm × 225mm × 108mm
Size of the cubic block 340mm × 340mm × 185mm
Size of the folding ramp block 668 mm × 340 mm × 185 mm
Mass of the vehicle 5.2kg
Mass of the cubic block 3.2kg
Mass of the folding ramp block 4.6kg
Rated payload of lifting 53.2N
Max. speed of the vehicle 2m/s (no-load)

A. Mobile Manipulation Vehicle

Fig. 5: The mobile manipulation robot with lifting manipu-

lator.

The robot is composed of an omnidirectional mobile chas-

sis and a lifting manipulator, as shown in Fig. 5. Mecanum

wheeled chassis is adopted because of its high mobility. The

drive system of the mobile chassis consists of four DJI 2006

P36 DC motors, providing a rated angular speed of 416 rpm.

Maximum speed of the mobile chassis reaches more than 2

m/s. The lifting manipulator is achieved by symmetric rod-

slider mechanism, which converts the rotary motion of DC

motor into vertical linear motion of the lifting plate. Torque

of DC motors for lifting is transmitted to the left and right

swing rod via the gear train, as shown in Fig. 6. Eqs. (1)-(3)

presents the relationship between the payload of the lifting

plate FL, the transmission ratio i12 and the torque of the DC

motor M1, respectively. The lifting mechanism is driven by

a DJI M3508 motor with rated torque of 3 Nm. Considering

transmission efficiency which is about 0.8, the transmission

ratio is chosen as 4:3 and the rated payload of lifting is

about 53.2 N. As shown in Fig. 7(c), convex with wedge-

shaped surface is placed on the lifting plate. The wedge-

shaped surface realizes passive positional alignment between

the lifting plate and the blocks.

FL1 = FL2 (1)

FL1 ×L× cos(θ)+FL2 ×L× cos(θ)−M1 × i12 = 0 (2)

FL = FL1 +FL2 =
M1 × i12

L× cos(θ)
,θ ∈ [

π

10
,

π

2
] (3)

B. Cubic Block

The block is designed as a cube with four surrounding

tunnel openings, as shown in Fig. 7. Due to the lifting



Fig. 6: Lifting mechanism achieved by rod-slider mechanism.

Fig. 7: (a) The Cubic block. (b) Wedge concave on the

underside of the block. (c) Wedge convex on the lifting plate.

manipulation design, the volume of the block can reach about

3.7 times the volume of the vehicle. Silicon steel sheets and

electropermanent magnets are respectively placed on the four

corners of the upper surface and the lower surface. Each

electropermanent magnet provides about 100N of normal

magnetic force and 25N of tangential magnetic force. When

the lifting plate touches the bottom of the block, power

supply connectors on the lifting plate are in contact with the

positive and the negative copper sheets placed at the bottom

of the block. Degaussing of the electropermanent magnet

can be directly controlled by on-off control command from

the mobile manipulation vehicle. Since the error of visual

localization and control is inevitable, some fault-tolerant

mechanical features are adopted. As presented in Fig. 7(b),

a wedged concave is designed on the underside of the block.

When the manipulation mechanism lifts the block, passive

alignment of wedged concave on the block and wedged

convex on the lifting plate provides positional error tolerance

of 10 mm to compensate stochastic error of motion control.

C. Folding Ramp Block

Fig. 8: Lifting mechanism achieved by rod-slider mechanism.

Switch of the folded and unfolded states of the ramp block

is achieved by an actively actuated hinge mechanism, as

shown in Fig. 8. Unfolded state of the ramp block is a ramp

with an inclination of 15°. When the lifting plate picks the

folded ramp block, the overall COM should be as close as

possible to the central axis of the lifting plate to increase

stability of motion. Then, actuation of the hinge is placed

on the other side of the block, and torque is transmitted to

the hinge via belt transmission, as shown in Fig. 8(b). The

design of the passive alignment and magnetic absorption of

the lifting surface is the same as that of the cubic block. The

actuation of the hinge is driven by a DJI M3508 motor. The

surface of the ramp is covered with a layer of anti-slip tape.

After the mobile manipulation vehicle places the folded ramp

block to the target localization, it sends control commands

to the ramp via wireless signal, and the ramp block unfolds.

D. Electronics

Fig. 9: Electronics framework of the mobile manipulation

vehicle.

As shown in Fig. 9, the electronics of the mobile ma-

nipulation vehicle includes five modules: the power supply

module, the processor module, the actuator module, the

vision module and the remote module. The hub board is the

hub for power and CAN communication. A 24V Lithium

battery powers the hub board, and the hub board powers

the actuator module and the chassis control board. The hub

board also bridges CAN communication among the chassis

control board and the ESCs. A MOS switch accepts the

GPIO signal from the chassis control board, which is used

to change the on-off of the electropermanent magnets on the

lifting plate. The Jetson NX development board serves as an

upper computer dealing with visual localization computing

and sends action commands to the chassis’s control board

via USART. An RGB camera generates images at 50Hz for

visual localization. A Zigbee module is used for wireless

communication between the vehicle and the folding ramp

block.

V. VISUAL LOCALIZATION

A. Hardware Setup and Calibration

The visual perception system is designed simply based

on one camera, which is a 960 × 600 monochrome camera

equipped with a 180-degree wide-angle lens.



TABLE II: An example of visual localization.

Case number 1 2 3 4 5 6 7 8 9 10 11 12 13

Current state (xc,yc)
Starting area number Ns 1 2 3 3 4 5 5 6 7 7 8 1

OthersEnding area number Ne 7 6 5 1 8 7 3 2 1 5 4 3
Flag(=Ns ∗10+Ne) 17 26 35 31 48 57 53 62 71 75 84 13

Next state (xc,yc +1) (xc +1,yc) (xc,yc −1) (xc −1,yc) (xc,yc)

To unify the vision and control coordinate system, cal-

ibration of the transformation relationship T car
camera from the

camera to the COM of the vehicle is conducted, with the help

of a grid of AprilTag [19] markers with known dimensions.

As each AprilTag marker has a unique identifier, it is easy

for us to get the camera pose T camera
vision . It is evident that

T car
camera = T camera

vision
−1 ∗T car

vision.

Fig. 10: AprilTag Layout. (a) Ground; (b) Ramp; (c) Block.

Fig. 11: Line patrol process. The boundaries l0 and l1 of the

black line are detected and their median line l. lre f denotes

the center line of the image.

B. AprilTag Layout

We adpot AprilTag markers for location of the mobile

vehicle, as detailed in the following:

• Ground. The ground is covered with AprilTag mark-

ers to ensure continuous positioning. Unlike previous

methods, multiple tags are deployed in the field of view

to make the positioning result more robust. As shown

in Fig. 10(a), for the detected tags, we can identify

the largest square (denoted as M) they can form. The

location of the vehicle is determined by the four vertices

of M.

• Folding ramp block. As shown in Fig. 10(b), the

bottom and top of the ramp are marked with unique

tags (Tag 0 and Tag 1). When going uphill, Tag 0 and

Tag 1 correspond to the starting state and ending state

respectively, with the opposite for going downhill.

• Cubic block. As shown in Fig. 10(c) , another unique

tag is set (Tag 2) at the center of the block, which is

used to mark how many blocks the vehicle has passed

through. Moreover, we also set some small tags around

the block to help us with local positioning on the block.

• Line patrol. When the vehicle travels on the ramp

and the block, positioning is discrete and line patrol

is deployed to keep the vehicle along the center line

without falling off. First, we globally binarize the orig-

inal image. As shown in Fig. 11, we detect lines with

the help of Hough transform [20]. Finally, the median

line l of l0 and l1 are computed, and the angle α and

distance d offset of line l relative to the center line lre f

of image are obtained.

C. Visual Localization

To cover a large area of ground (made of aluminum

bases) with limited kinds of AprilTag markers, we design

a method for AprilTag marker reuse. The reused template

B contains 32×32 different AprilTag markers. If the area

is large enough, we can use an unlimited number of B to

cover the ground, only requiring to align their boundaries.

As Fig. 12 shows, B is divided into 9 areas, and each area is

assigned a corresponding number. When the mobile vehicle

is traveling on the areas, assuming that it is currently located

at the template numbered (xc,yc), there are 13 cases as shown

in Table II. The following equation shows our method to

locate the vehicle in the whole map:






x = xb + xc ∗ lb,
y = yb + yc ∗ lb,
z = zb,

(4)

in which (xb,yb,zb) represents the position of the template,

(x,y,z) denotes the vehicle position in the whole map, and

lb denotes the template size.

When there are tags from different areas in the filed of

view, tags from the area which include the largest number

of tags for localization are selected.

VI. HIGH-LEVEL PLANNING

We focus on the reliability and generality of the RECCraft

system. One way to validate this is to apply high-level

control policies upon the RECCraft system to test its perfor-

mance. In recent years, reinforcement learning (RL) has been

demonstrated effective in solving online decision problems.

Great achievements have been witnessed in applications of

game AI [21], [22], robotics manipulation [23], resource



Fig. 12: When the mobile vehicle crosses the templates, there

are 12 cases as indicated by the red arrow.

management [24], etc. In this section, we also apply deep

RL method to learn the control policy for the vehicle. RL

requires frequently interacting with an environment to obtain

a large number of trajectories. It is not practical to directly let

the RL agent interact with the RECCraft system in reality.

Therefore, we build a simulation environment that mimics

the real system, using the Bullet engine. A screenshot of the

simulation environment is provided in Fig. 13. The vehicle,

cubic block and ramp block in the simulation environment

strictly follow the physical attributes of the real objects in

the RECCraft system.

Fig. 13: The simulation environment.

In the RECCraft simulation environment, the agent (i.e.,

the mobile vehicle) observes a 3D grid space and chooses

its action from a set of 10 actions, including moving

forward/back/left/right, turning left/right, lifting cubic/ramp

block, dropping cubic/ramp block, folding/unfolding ramp

block. The agent is assigned a target construction pattern,

which should be built by the agent by collecting randomly

scattered blocks (which can speedup the RL training process

with more random diversity). A standard RL problem can

be described by a tuple ⟨E,A,S,P,r,γ,π⟩, where E indicates

the environment that is an MDP with dynamics transition

probability P; at each time step t, st ∈ S is the global state

in the state space S, and at ∈ A is the action executed

by the agent at time step t from the action space A; the

dynamics transition function P(st+1|st ,at) is the probability

of the state transition (st ,at) −→ st+1; for the most general

case, the reward r(st ,at ,st+1) can be written as a function

of st ,at and st+1, while in many tasks it only relies on

one or two of them, or it is even a constant in sparse

rewards problem. For notation simplicity, we usually write

r(st ,at ,st+1) as rt ; γ ∈ [0,1] is a discount factor and π(at |st)
denotes a stochastic policy. The following equations define

some important quantities in reinforcement learning.

J(π) = Es0,a0,···∼P,π

[

∞

∑
t=0

γ trt

]

, where s0 ∼ P(s0),

at ∼ π(at |st), st+1 ∼ P(st+1|st ,at).

At time step t, the state-action value Qπ , value

function V π , and advantage Aπ are defined as

Qπ(st ,at) = Est+1,at+1,···∼P,π

[

∑
∞
l=0 γ lrt+l

]

, V π(st) =
Eat ,st+1,···∼π

[

∑
∞
l=0 γ lrt+l

]

, and Aπ(s,a) = Qπ(s,a)−V π(s).
A widely applied RL algorithm is PPO [25], which solves

the following optimization problem

E
s∼d

πθold ,a∼πθold

[

min
(

R(θ)Aπθold (s,a),

clip(R(θ),1− ε,1+ ε)A
πθold (s,a)

)]

,

where R(θ) = πθ (a|s)
πθold

(a|s) and ε is a hyperparameter controlling

the proportion of clipped data. In our implementation, we

adopt PPO as the baseline RL algorithm. The performance

of the convergent agent is provided in a demo video in the

supplementary material. This verifies that our CRC system

is easily applied with high-level control methods, such as

general RL.

In multi-agent settings, the robots learn to coordinate with

each other through reinforcement learning. A centralized

reward function is defined to encourage all the agent in

the team to achieve a common goal. The agents need to

cooperate with each other to achieve the goal. For example,

to build a complex construction efficiently, different agents

should work on different parts of the construction simultane-

ously. The RL-based assembly planner can scale through a

Centralized Training and Decentralized Execution (CTDE)

framework [26], [27], where during training, we have a

centralized value function that processes the information

collected by all the robots and calculates the credits and

assigns these credits to each robot in the team. During

execution, each robot only needs to know its own partial

observation, which reduces load of computing for each robot.

VII. EXPERIMENT AND DEMONSTRATION

In this section, validation of the robustness and con-

struction speed of the RECCraft system are conducted by

simple tasks and multi-layer construction. Aluminum bases

are prepared for experimental purpose, which are covered

with grids of the same length and width as the block. Silicon

steel sheets are installed on the four corners of the grids.

A. Robustness of Mobile Manipulation

Motion control among grids is realized by combination of

OBVP motion planner and PID controller. The PID control

includes a coarse position PID controller and a fine-tuning

position PID controller.



Fig. 15: Demonstration of autonomously building multi-layer construction: (a) Building 2-layer construction by RL-based

planning in 4 minutes 16 seconds. (b) Building 3-layer construction by preplanned actions in 6 minutes 25 seconds.

Fig. 14: Experiments of picking/placing a block on the

ground. Yellow route: route of placing a block. Green route:

route of picking a block.

TABLE III: Success rate and time expanse of placing a block.

Time of fine tuning (s) Time of placing (s) Total (s) Success rate
Average 4.34 1.51 5.85 100%
Max. 5.02 1.55 6.57
Min. 3.87 1.46 5.33

As shown in Fig. 14, points A, B, C and D are the center

points of the four adjacent grids on the testbed, respectively.

In 1000 trials of placing a block, the robot moves circularly

between points A, B, C and D, and sequentially picks/places

the block at point A and point C. A successful trial of picking

and placing a block indicates that electropermanent magnets

and silicon steels are attached without positional deviation.

As shown in Table III and Table IV, the system achieves

100% success rate in 1000 trials of picking and placing. The

average total time expanse of placing a block is 5.85s and

that of picking a block is 5.13s.

B. Building Multi-Layer Construction

In building tasks realized by high level planner, sequences

of robot actions consist of picking/placing a block, moving

ahead/back/left/right, climbing up/down, folding/unfolding a

ramp block. The robot builds multi-layer construction by a

well-trained RL-based planner or pre-planned actions. As

TABLE IV: Success rate and time expanse of picking a

block.

Time of fine Tuning (s) Time of lifting (s) Total (s) Success rate
Average 3.14 1.99 5.13 100%
Max. 4.21 2.51 6.71
Min. 2.58 1.42 4.00

shown in Fig. 15(a), the robot builds a 2-layer construction

with 6 cubic blocks and 2 ramp blocks by RL-based plan-

ner in 4 minutes 16 seconds, which achieves construction

throughput of 6.7× 105 mm3/s. As shown in Fig. 15, the

robot builds a 3-level construction with 6 cubic blocks and

3 ramp blocks by pre-planned action sequence in 6 minutes

25 seconds, which achieves contruction throughput of 5.0

× 105 mm3/s. Demonstration video of building multi-layer

construction is attached to the video document.

VIII. CONCLUSIONS

In this paper, we present an autonomous robotic con-

struction platform with high construction speed. With the

assistance of the folding ramp block, the mobile manipula-

tion robot robustly climbs to the upper layer of construc-

tion. Then, 1-DOF lifting mechanism as well as passive

mechanical alignment of the lifting plate and the blocks

realize efficient (about 5s - 6s for picking or placing a block)

and robust manipulation (success rate of 100% for picking

and placing a block). With energization and degaussing of

the electropermanent magnet powered by the lifting plate, a

block is easily removed from the construction. The position

error of visual localization achieved by Apriltags is within 10

mm on the ground and 2 mm on the block, which provides a

reliable localization for lifting and placement of blocks. The

robotic system finishes building task by RL-based planner of

2-level construction with 8 blocks in 4 minutes 16 seconds

and building tasks by pre-planned action sequence of 3-level

construction with 9 blocks in 6 minutes 25 seconds. For

comparison of construction speed of the construction system,

[8] proposes the metric ªStructure volume per robot-unit-

minuteº and [28] proposes the volumetric throughput. Using

these metrics, we compare the construction efficiency of our

system with other existing discrete construction systems in

Table V. From the results, our construction system demon-



TABLE V: Comparison of construction speed of typical prototypes of discrete construction.

RECCraft (Ours) Termes [9] Material-Robot [28] Cubic-UAV [29] Bricks-UAV [17] 2D-Bricks [30]

Mobility Ground Ground Ground Flying Flying Stationary

Throughput (mm3/s) 6.7× 105 1.5× 104 2.0× 104 1.0 × 105 1.0 × 105 1.33
Volume per robot-unit-minute [8] 7.0 0.87 1.41 3.93 0.34 ±

strates advanced throughput of 6.7× 105 mm3/s and structure

volume per robot-unit-time of 7.0. Both metrics indicate that

construction speed of the RECCraft system reaches a new

state-of-the-art level.

For future work, the RECCraft system could serve as a

generalized platform for swarm intelligence research. It is

also possible to help creating industrial robotic system which

builds multi-layer storage racks for unmanned warehouses,

like Kiva robotic system [18]. We are also interested in

benchmarking different methods with the RECCraft system,

including deterministic and provable algorithms and other

RL methods, to compare their performance.
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