Supplementary Material for ‘Generalized Hi-
erarchical Sparse Model for Arbitrary-Order
Interactive Antigenic Sites Identification in Flu
Virus Data’

Proof of Theorem 1

Proof. We prove the theorem by contradiction. Suppose the op-
timal solution of problem (10) is {8, --- 8} and there ex-
ists some element HEZ) i) that its sign differs from the the ele-

(k) : ; §(k) — e (k)
ment v, Le. sign (9<i17“"ik>> = —sign (U<i1,~- u))

Now, let GEk) = —'U.C)_“ o .\ with
-~ i1, i) (i1, 4ik) - 2 tE)
OEZ) i,y in the optimal solution to get {0 ... 05}, Ttis
easy to see that {é(l), e ,é<K>} still satisfies the hierarchical
chain constraint in problem (10) and the value of the second ¢; term
in the objective function remains the same under the new solution.
Now since Z S, |6%) —v®) |3 < 257K [P —v¥) |3, we
conclude that {8 . .
makes a contradiction.
Now, we know that the signs of the elements in the optimal
solution {8*(M) ... #*)} must be the same with the signs of

and replace GEZ)

-0 )} is not the optimal solution, which

the corresponding elements in {v(l), s v )}. Then, by letting
6% = 10" for k € Nk, we can directly obtain the conclusion
in Theorem 1. O

Proof of Lemma 1

Proof. The first statement is obvious. We now adopt the induction
technique to prove the second statement. In the following analysis,
a sequence ($1,-- -, Sk ) is said to be better (worse) than another
sequence (81, -, §k ) for problem (19) if both the sequences are
feasible for problem (19), i.e., satistying the hierarchical chain con-
straints and the objective value of problem (19) at ($1,--- , 5k ) is
smaller (larger) than that at (51, - - , k).

When H = 2 and u1 < wug, we assume the optimal solution
is (s1,s3), where s7 > s5. If s] > s3, there must exist a § that
8T >35> s5and u1 < 5 < ug. Otherwise, if u; < us < 3 <
s1, we can immediately get s5 = w2, and then (s3, s3) is better
than (s7, s3), which contradicts the fact that (s7, s3) is the optimal
solution. The case that s5 < § < u1 < ug can be proved similarly.

Now we have sT > § > s5 and u1 < § < uz. Assume § =
%, we can immediately obtain that (3, §) is better than
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(s1, s3), which again contradicts the fact that (s7, s5) is the optimal
solution. Therefore, we must have s] = s5 = %

Then we assume that the statement holds for any k < K -1
‘We will show that when k = K, the statement also holds. Actu-
ally, given £ = K and u; < --- < ugk, the optimal solution must
have the form (3, -+, 8)|x—1 D sk, i.e. (3,---,8§,sk), where
§ > §%. Otherwise, suppose the optimal solution is denoted by
(%1, 82, -+, $x) with at least one equality dissatisfied in inequal-
ities $1 > $2 > -+ > $x—1. Then we can immediately obtain
a contradiction that the sequence (3%, -+ ,§)|k—1 I Sk is bet-
ter than (31, $2,- -+, $x) where (§*,---,3")|x—1 is the optimal
solution of the problem of size kK = K — 1 corresponding to the
sequence (u1,...,uKx—1). Similarly, we can get that the optimal
solution have the form s7 > (3, -, 8)|x—1, i.e. (s1,8,---,3),
where s7 > 3. Combing those results we complete the proof. O

A Useful Lemma

LEMMA 3. Forany input (u1,--- ,uk) and (w1, ,wk), if
the optimal solution of problem (19) is (s*, - ,s")|k, then for

any §and 1 > -+ > Sk such that s* > § > $1 or §x > § > 57,
the sequence (51, - - , S is not better than (3, - - , 3)| k.

Proof. We first prove it when s* > § > §;. Given any K
and the sequence (u1, - - - , uk ), we consider the feasible sequence
(1, -+, $K) for problem (19), where $1 > --- > $k. Then,
we can obtain that the sequence ($1,- - , $1)|k is not worse than
($1,-+-, $K), because if (51, - , $1)|x is worse, there must exist
a sequence (82, -+, 8K ), where 8" > §2 > -+ > §k, such that
the optimal solution for the sub-sequence (s2, - - - , Sk ) is (82, -,

5K ),and in that case (s*, 82, - - - , §x ) is better than (s, - - - | s™)|x
which contradicts with the fact that (s*,--- , s")|» is the optimal
solution. Therefore ($1,---,$1)|n is better than ($1,---,$K).
Furthermore, since s* > § > $1, it is easy to see that (3, - , )|k
is not worse than ($1,-- -, $1)|x due to the convexity of the func-
tion f(z) = Y, wk(z — uk)? for positive weights wi. So we
complete the proof when s* > § > §;. The case that $x < § < s*
can be proved similarly and we finish the proof. |

Proof of Lemma 2

Proof. The case that @* > 4" is obvious. Then we prove the case
that «* < 4*. In this case, we denote the optimal solution for
the concatenated sequence by (si,---, s/, /41, - ,Sn), Where
s1 > - > 8 > s/y; > -+ > sp,. Then it is easy to show
that s; > 4*, because if s; < 4, substituting the sub-sequence
(STW" 782‘) with ('l.l,*,”' ,’l:L*)|l in ('5){7"' 73775;4»17"' 78’2)

will lead to a better feasible solution, which makes a contradic-
tion. Similarly, we can show that s;,; < 4*. Then based on
Lemma 3, substituting the two sub-sequences (s7,---,s;) and
(Sl*+17 T 75;) with (5?7 T 787)|l and (5;4—17 o 75?—0—1)‘7171 re-
spectively will generate a new solution that is not worse than the
previous one. Note that s; > a*, sj; < @, w* < 4" and
s{ > s{y1. Then the optimal solution is achieved when s; = s}, ;
due to the convexity of the objective function, making the opti-
mal solution have the form (s*,- -, s)|,. Plugging the form into

problem (19), we get s* = miliw, in which we reach the
k=1

conclusion. O

Proof of Theorem 2

Proof. In Algorithm 3, step 1 splits the initial sequence (u1, - -
,uk) into several non-decreasing sub-sequences. According to
Lemma 1, the solutions for those sub-sequences take the form that
the entries in the solution are identical. Then, steps 2-14 concate-
nate the solutions of these sub-sequences according to Lemma 2
iteratively. According to Lemma 2, the global optimality can be
guaranteed for any concatenation operation. So Algorithm 3 can
find the optimal solution in step 15 for problem (19). a
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