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Proof of Theorem 1
Proof. We prove the theorem by contradiction. Suppose the op-
timal solution of problem (10) is {θ̇(1), · · · , θ̇(K)} and there ex-
ists some element θ̇(k)

〈i1,··· ,ik〉
that its sign differs from the the ele-

ment v(k)

〈i1,··· ,ik〉
, i.e. sign

(
θ̇

(k)

〈i1,··· ,ik〉

)
= −sign

(
v

(k)

〈i1,··· ,ik〉

)
.

Now, let θ̈(k)

〈i1,··· ,ik〉
= −θ̇(k)

〈i1,··· ,ik〉
, and replace θ̇(k)

〈i1,··· ,ik〉
with

θ̈
(k)

〈i1,··· ,ik〉
in the optimal solution to get {θ̈(1), · · · , θ̈(K)}. It is

easy to see that {θ̈(1), · · · , θ̈(K)} still satisfies the hierarchical
chain constraint in problem (10) and the value of the second `1 term
in the objective function remains the same under the new solution.
Now since τ

2

∑K
k=1 ‖θ̈

(k)−v(k)‖22 < τ
2

∑K
k=1 ‖θ̇

(k)−v(k)‖22, we
conclude that {θ̇(1), · · · , θ̇(K)} is not the optimal solution, which
makes a contradiction.

Now, we know that the signs of the elements in the optimal
solution {θ∗(1), · · · ,θ∗(K)} must be the same with the signs of
the corresponding elements in {v(1), · · · ,v(K)}. Then, by letting
θ̄(k) = |θ(k)| for k ∈ NK , we can directly obtain the conclusion
in Theorem 1. 2

Proof of Lemma 1
Proof. The first statement is obvious. We now adopt the induction
technique to prove the second statement. In the following analysis,
a sequence (ṡ1, · · · , ṡK) is said to be better (worse) than another
sequence (s̈1, · · · , s̈K) for problem (19) if both the sequences are
feasible for problem (19), i.e., satisfying the hierarchical chain con-
straints and the objective value of problem (19) at (ṡ1, · · · , ṡK) is
smaller (larger) than that at (s̈1, · · · , s̈K).

When H = 2 and u1 ≤ u2, we assume the optimal solution
is (s∗1, s

∗
2), where s∗1 ≥ s∗2. If s∗1 > s∗2, there must exist a š that

s∗1 > š > s∗2 and u1 ≤ š ≤ u2. Otherwise, if u1 ≤ u2 < š <
s∗1, we can immediately get s∗2 = u2, and then (s∗2, s

∗
2) is better

than (s∗1, s
∗
2), which contradicts the fact that (s∗1, s

∗
2) is the optimal

solution. The case that s∗2 < š < u1 ≤ u2 can be proved similarly.
Now we have s∗1 > š > s∗2 and u1 ≤ š ≤ u2. Assume š =

ω1u1+ω2u2
ω1+ω2

, we can immediately obtain that (š, š) is better than
(s∗1, s

∗
2), which again contradicts the fact that (s∗1, s

∗
2) is the optimal

solution. Therefore, we must have s∗1 = s∗2 = ω1u1+ωu2
ω1+ω2

.
Then we assume that the statement holds for any k ≤ K − 1.

We will show that when k = K, the statement also holds. Actu-
ally, given k = K and u1 ≤ · · · ≤ uK , the optimal solution must
have the form (š, · · · , š)|K−1 ./ s∗K , i.e. (š, · · · , š, s∗K), where
š ≥ s̄∗K . Otherwise, suppose the optimal solution is denoted by
(ṡ1, ṡ2, · · · , ṡK) with at least one equality dissatisfied in inequal-
ities ṡ1 ≥ ṡ2 ≥ · · · ≥ ṡK−1. Then we can immediately obtain
a contradiction that the sequence (š∗, · · · , š∗)|K−1 ./ ṡK is bet-
ter than (ṡ1, ṡ2, · · · , ṡK) where (š∗, · · · , š∗)|K−1 is the optimal
solution of the problem of size k = K − 1 corresponding to the
sequence (u1, . . . , uK−1). Similarly, we can get that the optimal
solution have the form s∗1 ./ (š, · · · , š)|K−1, i.e. (s∗1, š, · · · , š),
where s∗1 ≥ š. Combing those results we complete the proof. 2

A Useful Lemma
LEMMA 3. For any input (u1, · · · , uK) and (ω1, · · · , ωK), if

the optimal solution of problem (19) is (s∗, · · · , s∗)|K , then for

any š and ṡ1 ≥ · · · ≥ ṡK such that s∗ ≥ š ≥ ṡ1 or ṡK ≥ š ≥ s∗,
the sequence (ṡ1, · · · , ṡK) is not better than (š, · · · , š)|K .

Proof. We first prove it when s∗ ≥ š ≥ ṡ1. Given any K
and the sequence (u1, · · · , uK), we consider the feasible sequence
(ṡ1, · · · , ṡK) for problem (19), where ṡ1 ≥ · · · ≥ ṡK . Then,
we can obtain that the sequence (ṡ1, · · · , ṡ1)|K is not worse than
(ṡ1, · · · , ṡK), because if (ṡ1, · · · , ṡ1)|K is worse, there must exist
a sequence (s̈2, · · · , s̈K), where s∗ > s̈2 ≥ · · · ≥ s̈K , such that
the optimal solution for the sub-sequence (s2, · · · , sK) is (s̈2, · · · ,
s̈K), and in that case (s∗, s̈2, · · · , s̈K) is better than (s∗, · · · , s∗)|K ,
which contradicts with the fact that (s∗, · · · , s∗)|n is the optimal
solution. Therefore (ṡ1, · · · , ṡ1)|n is better than (ṡ1, · · · , ṡK).
Furthermore, since s∗ ≥ š ≥ ṡ1, it is easy to see that (š, · · · , š)|K
is not worse than (ṡ1, · · · , ṡ1)|K due to the convexity of the func-
tion f(x) =

∑
k ωk(x − uk)2 for positive weights ωk. So we

complete the proof when s∗ ≥ š ≥ ṡ1. The case that ṡK ≤ š ≤ s∗
can be proved similarly and we finish the proof. 2

Proof of Lemma 2
Proof. The case that u̇∗ ≥ ü∗ is obvious. Then we prove the case
that u̇∗ < ü∗. In this case, we denote the optimal solution for
the concatenated sequence by (s∗1, · · · , s∗l , s∗l+1, · · · , s∗n), where
s∗1 ≥ · · · ≥ s∗l ≥ s∗l+1 ≥ · · · ≥ s∗n. Then it is easy to show
that s∗l ≥ u̇∗, because if s∗l < u̇∗, substituting the sub-sequence
(s∗1, · · · , s∗l ) with (u̇∗, · · · , u̇∗)|l in (s∗1, · · · , s∗l , s∗l+1, · · · , s∗n)
will lead to a better feasible solution, which makes a contradic-
tion. Similarly, we can show that s∗l+1 ≤ ü∗. Then based on
Lemma 3, substituting the two sub-sequences (s∗1, · · · , s∗l ) and
(s∗l+1, · · · , s∗n) with (s∗l , · · · , s∗l )|l and (s∗l+1, · · · , s∗l+1)|n−l re-
spectively will generate a new solution that is not worse than the
previous one. Note that s∗l ≥ u̇∗, s∗l+1 ≤ ü∗, u̇∗ < ü∗ and
s∗l ≥ s∗l+1. Then the optimal solution is achieved when s∗l = s∗l+1

due to the convexity of the objective function, making the opti-
mal solution have the form (s∗, · · · , s∗)|n. Plugging the form into
problem (19), we get s∗ =

∑n
k=1 ωkuk∑n
k=1

ωk
, in which we reach the

conclusion. 2

Proof of Theorem 2
Proof. In Algorithm 3, step 1 splits the initial sequence (u1, · · ·
, uK) into several non-decreasing sub-sequences. According to
Lemma 1, the solutions for those sub-sequences take the form that
the entries in the solution are identical. Then, steps 2-14 concate-
nate the solutions of these sub-sequences according to Lemma 2
iteratively. According to Lemma 2, the global optimality can be
guaranteed for any concatenation operation. So Algorithm 3 can
find the optimal solution in step 15 for problem (19). 2


