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ABSTRACT
The maximum likelihood estimation (MLE) for the Gaussian graph-
ical model, which is also known as the inverse covariance estima-
tion problem, has gained increasing interest recently. Most exist-
ing works assume that inverse covariance estimators contain sparse
structure and then construct models with the `1 regularization. In
this paper, different from existing works, we study the inverse co-
variance estimation problem from another perspective by efficiently
modeling the low-rank structure in the inverse covariance, which
is assumed to be a combination of a low-rank part and a diago-
nal matrix. One motivation for this assumption is that the low-
rank structure is common in many applications including the cli-
mate and financial analysis, and another one is that such assump-
tion can reduce the computational complexity when computing its
inverse. Specifically, we propose an efficient COmponent Pursuit
(COP) method to obtain the low-rank part, where each component
can be sparse. For optimization, the COP method greedily learns
a rank-one component in each iteration by maximizing the log-
likelihood. Moreover, the COP algorithm enjoys several appealing
properties including the existence of an efficient solution in each
iteration and the theoretical guarantee on the convergence of this
greedy approach. Experiments on large-scale synthetic and real-
world datasets including thousands of millions variables show that
the COP method is faster than the state-of-the-art techniques for the
inverse covariance estimation problem when achieving comparable
log-likelihood on test data.
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1. INTRODUCTION
Suppose there are n instances {x1, . . . ,xn} sampled from a

Gaussian distribution N (µ,Σ), where each instance xi ∈ Rp
(1 ≤ i ≤ n) lies in a p-dimensional space, µ ∈ Rp is the mean,
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and Σ ∈ Rp×p is the covariance matrix. An important and chal-
lenging problem is to recover Σ or its inverse Σ−1 in a high-
dimensional setting where n � p. Estimating the inverse covari-
ance matrix has attracted a lot of interests in several fields including
machine learning, signal processing, computational biology and
so on, since it can reveal the dependence among the p attributes
[28, 11, 3]. The inverse covariance matrix is estimated by maxi-
mizing the log-likelihood as

max
Θ�0

log |Θ| − 〈S,Θ〉,

or equivalently minimizing the negative log-likelihood (NLL):

min
Θ�0

− log |Θ|+ 〈S,Θ〉, (1)

where Θ is the inverse covariance estimator, Θ � 0 indicates that
Θ is positive definite, | · | denotes the determinant of a square ma-
trix, 〈·, ·〉 denotes the dot product between two matrices or vectors,
µ̂ = 1

n

∑n
i=1 xi is the mean of the samples, and S = 1

n

∑n
i=1(xi−

µ̂)(xi − µ̂)T is the sample covariance matrix. If directly solv-
ing problem (1), we can obtain an analytical solution for Θ as
Θ = S−1. Under the high-dimensional setting where n � p,
S is rank-deficient and hence this analytical solution is ill-posed.
In order to make the problem well-defined, some regularizers are
used to constrain Θ and a widely used one is the `1 regulariza-
tion [28, 11, 3] which assumes that Θ is sparse with the objective
function formulated as

min
Θ�0

g(Θ) = − log |Θ|+ 〈S,Θ〉+ ρ‖Θ‖1, (2)

where ρ is a regularization parameter that controls the trade-off be-
tween the sparseness of Θ and the fitness to the data.

A large body of works have been devoted to solving problem (2)
recently [4, 6, 11, 23, 24, 25, 16, 17, 26], among which the state-
of-the-art methods including the QUIC [16], Big-QUIC [17] and
BCDIC [26] methods can handle Θ with billions of entries under
the assumption that Θ is sparse. Those methods commonly use
Newton proximal approaches, where a quadratic approximation is
made and one key step is to calculate the inverse of Θ, to minimize
the NLL. Obviously, the computational bottleneck in those meth-
ods is that they need to compute the matrix inverse Θ−1 in each
iteration, which is computationally heavy when p is very large. Al-
though the Big-QUIC and BCDIC methods alleviate this problem
by splitting the huge matrix Θ into blocks and use some cheaper
operations, e.g., solving some linear systems, to update the corre-
sponding blocks in Θ−1, the matrix inverse operation, whose com-
plexity is O(p3), is still unavoidable. Actually, almost all the ex-
isting methods to solve problem (2) have this problem. Moreover,
in the QUIC, Big-QUIC and BCDIC methods, an operation used to



largely improve the efficiency is to restrict the number of updated
positions in Θ and this operation works well when the optimal Θ
is very sparse, corresponding to a situation that the regularization
parameter ρ in problem (2) has a large value. To see this, empirical
studies in those works [16, 17, 26] choose ρ such that the optimal
Θ has only 10p non-zero entries out of a total number of p2 en-
tries and so only a very small fraction (i.e., 10/p) in the optimal Θ
can have non-zero values. Therefore, although those works claim
that their methods can handle a covariance matrix with billions of
entries, only a small number of non-zero values are actually com-
puted. Empirically we find that the QUIC, Big-QUIC, and BCDIC
methods are not very efficient when ρ has a smaller value. More-
over, an extremely sparse Θ learned in those works may fail to
recover the true relations between attributes.

In this paper, we investigate the inverse covariance estimation
problem from another perspective by modeling the low-rank struc-
ture contained in Θ. One motivation for learning the low-rank
structure in Θ is that the low-rank structure is common in many
applications. For example, in climate research, spatially close lo-
cations usually exhibit strong dependencies in the climate attributes
and such geographical consistency usually leads to low-rank struc-
ture in the data [14, 2, 27]. Similarly, in traffic analysis, strong local
correlations have been detected on large-scale traffic networks and
hence low-rank structure exists [13]. Moreover, in computational
finance, a large body of works have focused on estimating nearly
low-rank covariance or precision matrices for economy and stock
analysis [9, 10, 7, 8]. Moreover, in addition to the generality of
the low-rank structure in various applications, this assumption can
bring the computational benefit since the matrix inverse Θ−1 re-
quired in each iteration can be computed in lower complexity.

Specifically, we propose a COmponent Pursuit (COP) method
which assumes that the inverse covariance is a combination of a
diagonal matrix and a low-rank matrix which can be sparse. In
order to obtain the low-rank part in Θ, the COP method greedily
learns a rank-one component in each iteration by maximizing the
log-likelihood, where each rank-one component can be sparse. The
subproblem associated with each rank-one component is shown to
be non-convex under the high-dimensional setting but due to the
special structure of the subproblem, we can prove that all its local
optimums have the globally optimal objective value, making the
optimization easier. We further show that the greedy COP algo-
rithm inherently enjoys several appealing properties including the
existence of an efficient solution for each subproblem and the theo-
retical guarantee on the convergence of this greedy approach. Com-
pared with most existing methods whose complexity is O(p3), the
proposed COP method only takes O(p2) operations. Experiments
on large-scale synthetic and real-world datasets show that the pro-
posed COP method is faster than the state-of-the-art methods for
large-scale inverse covariance estimation when achieving compa-
rable log-likelihood on test data.
Notations: We use lower-case letters for scalars, bold-face and
lower-case letters for vectors, and bold-face and upper case letters
for matrices. tr(·) denotes the trace of a square matrix. rank(·) de-
notes the rank of a matrix. diag(·) converts a vector to a diagonal
matrix or extracts the diagonal entries in a square matrix to form a
vector. ‖ · ‖2 denotes the `2 norm of a vector. ‖ · ‖? denotes the
`2 norm of a matrix, which equals the maximum eigenvalue of a
square matrix.

2. RELATED WORK
Most of the previous studies [4, 6, 11, 23, 24, 25, 16, 17, 26]

assume that the inverse covariance matrix is sparse and propose
different optimization algorithms to solve problem (2). Different

from those approaches, we aim to learn low-rank structure in the
inverse covariance matrix.

Similar to our work, some recent methods investigate other struc-
tures of the inverse covariance instead of learning with pure spar-
sity. For example, in [23, 14, 17], the inverse covariance matrix
is assumed to have diagonal block structure, where each diagonal
block matrix is sparse, when the attributes can be divided into sev-
eral groups with each one containing similar attributes. Moreover,
the latent Gaussian graphical model (LGGM) proposed in [5] as-
sumes that the inverse covariance is equal to the difference between
a sparse matrix and a low-rank matrix, and two algorithms [22, 15]
including the alternating direction method and Newton proximal
method have been proposed for the LGGM method. However,
these methods [23, 14, 17] still learn the sparse inverse covariance
and the LGGM method treats the sparse part as a dominate part.
Moreover, computing the matrix inverse with O(p3) complexity is
unavoidable in the LGGM method and even worse, it has to re-
cover the low-rank part via the eigen-decomposition in each itera-
tion, which also costs O(p3). Different from these algorithms, the
proposed COP method focuses on learning the low-rank part and
greedily pursuits a rank-one component in each iteration, whose
complexity is O(p2).

The proposed COP method seems related to the principal com-
ponent analysis (PCA) [18] but they are different, since the PCA
assumes the covariance matrix is a sum of a low-rank part and a
diagonal one but in the proposed COP method, the inverse covari-
ance matrix is a combination of a low-rank part and a diagonal one,
implying that the covariance matrix equals the difference between
a diagonal part and a low-rank one.

3. MOTIVATION AND PROBLEM SETUP
In this section, we formally present the motivation and define

the problem. In order to make the inverse covariance Θ positive
definite to satisfy the constraint of problem (1), we assume that Θ
is combination of two matrices, i.e., Θ = L + P, where L is a
low-rank positive semidefinite matrix and P is a positive definite
diagonal matrix. Such assumption on the structure of L and P is
motivated by the solution of problem (1) as revealed in the follow-
ing corollary.

COROLLARY 1. The optimal solution Θ∗ of problem (1) sat-
isfies the following condition:

Θ∗ � 1

‖S‖?
I,

where I is an identity matrix with appropriate size and A � B
implies that A−B is positive semidefinite for two square matrices
A and B.

Corollary 1 can be directly proved by theorems in [3, 21] and thus
its proof is omitted here. From Corollary 1, Θ∗ can be rewrit-
ten as Θ∗ =

(
Θ∗ − 1

‖S‖? I
)
+ 1
‖S‖? I where 1

‖S‖? I is diagonal

and Θ∗ − 1
‖S‖? I can be assumed to capture the low-rank struc-

ture. Inspired by this decomposition, we just assume that L is a
low-rank positive definite matrix and P = diag(η) is a diagonal
matrix where η ∈ Rp with each entry, i.e., ηi, positive. As we will
see later, such assumption on the structure of Θ can bring compu-
tational benefit since the complexity to compute Θ−1 reduces from
O(p3) to O(p2).

Then we are ready to present the problem formulation. Given the
sample covariance matrix S ∈ Rp×p, we consider the inverse co-
variance estimation problem by assuming a low-rank plus diagonal



structure as

min
Θ
L(Θ) = − log |Θ|+ 〈S,Θ〉 (3)

s.t. Θ = L + P, P = diag(η), ηi > 0, L � 0, rank(L) ≤ r,

where r � p is a pre-defined rank. In the next section, we propose
the efficient COP method to solve problem (3).

4. THE COP METHOD
In this section, we show how to solve problem (3) efficiently.

Since there are two parts, L and P, in problem (3), we use an al-
ternating method to solve it. That is, in each iteration, we first
optimize problem (3) with respect to (w.r.t.) P by fixing L and
then estimate L with P fixed, where L is learned by pursuing its
rank-one components greedily.

4.1 Learning Diagonal Part
When the low-rank component L is fixed, the problem w.r.t. the

diagonal part P is

min
P

h(P) = − log |L + P|+ 〈S,P〉

s.t. P = diag(η), ηi > 0. (4)

It is easy to prove that problem (4) is convex w.r.t. P or η and we
can use some gradient descent method to solve it directly, where
the gradient of the objective function in problem (4) is

∇ηh(P) = −diag((L + P)−1) + diag(S),

where (L+P)−1 = P−1−P−1U(I+UTP−1U)−1UTP−1 by
utilizing the low-rank structure of L that L equals UUT for some
low-rank U and hence it can be computed efficiently. Then, with
a carefully chosen step size as [16, 17, 15], the positiveness of ηi’s
can be guaranteed in each iteration.

Moreover, at the beginning of the COP algorithm, L is set to be
a zero matrix and the problem for P is formulated as

min
P

{
− log |P|+ 〈S,P〉 = −

p∑
i=1

log ηi + 〈diag(S),η〉

}
,

which has an analytical solution ηi = 1
sii

for 1 ≤ i ≤ p, where sij
denotes the (i, j)th element in S and sii is positive since S is a co-
variance matrix. We use this analytical solution as the initialization
for P.

4.2 Component Pursuit for Low-Rank Part
With a fixed P, we aim to learn the low-rank part L efficiently.

We propose to pursue its rank-one components of L iteratively.
When P is fixed, the problem w.r.t. L can be formulated as

min
L

− log |L + P|+ 〈S,L〉

s.t. L � 0, rank(L) ≤ r. (5)

In order to make the whole algorithm efficient, we aim to learn the
rank-one components in L greedily and hence in the (k+1)th itera-
tion we formulate the estimation Lk+1 as Lk+1 = Lk+uk+1u

T
k+1

where Lk is the low-rank estimation obtained until the kth iteration
and uk+1 is the rank-one component to be learned in the (k+1)th
iteration. By defining Mk = Lk+Pk, the subproblem w.r.t. uk+1

in the (k + 1)th iteration can be formulated as

min
u
F (uuT ) , − log |Mk + uuT |+ 〈S,uuT 〉, (6)

which can be simplified by omitting some constant terms as

min
u
f(u) ,− log

(
1 + uTM−1

k u
)
+ 〈S,uuT 〉. (7)

Based on problem (7), we are also interested in learning struc-
tured components. For example, in many situations, the rank-one
component in the low-rank structure can be sparse [29]. To ob-
tain sparse components via the `1 regularization, a simple variant
of problem (7) can be formulated as

min
u
− log

(
1 + uTM−1

k u
)
+ 〈S,uuT 〉+ γ‖u‖1, (8)

where γ > 0 is a regularization parameter controlling sparsity in
the rank-one component vector u.

Here we investigate both problems (7) and (8). For the two prob-
lems, the following theorem with its proof in the appendix shows
that they are non-convex under the high-dimensional setting.

THEOREM 1. When n � p, problems (7) and (8) are non-
convex w.r.t. u.

According to Theorem 1, we could only find a local optimum of
uk+1, making the greedy algorithm hard to learn a globally optimal
rank-one component of L in each iteration. Fortunately, we find
that all the local optimums of problem (7) have the same globally
optimal objective value of problem (6) according to the following
theorem.

THEOREM 2. For problem (7), if u is a rank deficient local
minimum of f(u), then U = uuT is a global minimum of F (U),
i.e., all the local optimums have the same globally optimal objective
value in problem (6).

Theorem 2 allows us to use any optimization method, which can
find a local optimum, to solve problem (7). Generally, we can use
gradient descent algorithms since the objective function f(·) is dif-
ferentiable and its gradient can be computed as

∇uf(u) = −
2M−1

k u

1 + uTM−1
k u

+ 2Su.

For problem (8), there is no result similar to Theorem 2. However,
we can use general proximal gradient (GPG) methods [12, 20] to
solve it efficiently by using the optimal solution of problem (7) as
the initialization to speedup the convergence. The entire greedy
COP algorithm is depicted in Algorithm 1.

Algorithm 1 The COP algorithm.
Input: S, r;
Output: Θ̂;
1: Initialize P0 and set M0 = P0, k = 0;
2: repeat
3: Solve problem (7) or (8) with fixed Pk;
4: Lk+1 = Lk + u∗k+1u

∗T
k+1;

5: Mk = Lk + Pk;
6: Compute M−1

k+1;
7: Update Pk with fixed Lk;
8: k := k + 1;
9: until k > r or some convergence criterion is satisfied

10: Θ̂ = Mk;



5. THEORETICAL ANALYSIS
In this section, we theoretically analyze the COP method, where

we derive an efficiently analytical solution for problem (7) and
prove the convergence of the COP algorithm in Algorithm 1.

We first present some interesting properties, which set the stage
for the introduce of our main results, of the COP method.

PROPOSITION 1. Assume Mk is the matrix obtained in the
kth iteration of Algorithm 1. If there exists a vector a ∈ Rp that

aTM−1
k a > aTSa > 0, (9)

then by defining

α =

√
1

aTSa
− 1

aTM−1
k a

and u = αa, (10)

we have L(Mk + uuT ) < L(Mk). Otherwise, adding any rank-
one component to Mk will not decrease the NLL, implying that
Algorithm 1 will stop at the kth iteration.

Proposition 1 provides the necessary condition, i.e., Eq. (9), for
the convergence of the COP method. Note that Proposition 1 does
not require that u should be a local optimum of problem (7) or (8).

PROPOSITION 2. Suppose a vector a satisfies Eq. (9) and de-

fine c =
aT M−1

k
a

aT Sa
> 1. Then, using the definitions in Eq. (10), the

decrease of the NLL in the two successive iterations, i.e. L(Mk)−
L(Mk + uuT ), is a monotone increasing function w.r.t. c:

L(Mk)− L(Mk + uuT ) , q(c) = log c+
1

c
− 1, (11)

where c > 1.

Proposition 2 implies that in order to achieve fast decrease in the
NLL by adding a rank-one component to Mk, we need to choose
the maximum value of c. Until now, both the Propositions 1 and 2
hold for Algorithm 1 when solving either problem (7) or (8), since
those results are obtained by analyzing the difference of the NLL
values in two successive iterations. When we solve problem (7)
based on the COP algorithm, we can obtain an analytical solution
for it with the detailed result shown in the following proposition.

PROPOSITION 3. If there exists a vector a satisfying Eq. (9),
then problem (7) is equivalent to the following Rayleigh quotient
problem:

max
a

c ,
aTM−1

k a

aTSa
s.t. aTSa > 0, (12)

which admits an analytical solution by solving the generalized eigen-
decomposition problem M−1

k a∗ = λ∗Sa∗ with λ∗ and a∗ as the
largest eigenvalue and the corresponding eigenvector. Moreover,
c
(k+1)
max , i.e., the maximum value that c can reach in the (k + 1)th

iteration of Algorithm 1, can be computed as

c(k+1)
max = max

a

aTM−1
k a

aTSa
=

(a∗)TM−1
k a∗

(a∗)TSa∗
= λ∗. (13)

In Proposition 3, the largest eigenvalue λ∗ and eigenvector a∗ of
the generalized eigen-decomposition problem can be computed ef-
ficiently by the power method [19]. Moreover, Proposition 3 im-
plies that solving the Rayleigh quotient problem also provides a
way to check whether Eq. (9) can be satisfied in the (k + 1)th it-
eration by testing whether c(k+1)

max = λ∗ > 1 holds or not. When
solving problem (8) instead, we directly check Eq. (9) based on the

component obtained by the GPG method to determine whether the
COP algorithm needs to be terminated.

In the following theorems, we present the analytical solution for
problem (7) and prove the convergence of the COP algorithm in
Algorithm 1.

THEOREM 3 (ANALYTICAL SOLUTION). Let Mk be the ma-
trix defined in step 5 of Algorithm 1 in the kth iteration and denote
by λ∗ and a∗ the largest eigenvalue and the corresponding eigen-
vector of the generalized eigen-decomposition problem M−1

k a∗ =
λ∗Sa∗. Then u∗, which is defined as

u∗ =

{ √
1

(a∗)T Sa∗

(
1− 1

λ∗

)
· a∗, if λ∗ > 1,

0, otherwise.
(14)

is a local optimum of problem (7) in the (k + 1)th iteration.

THEOREM 4 (CONVERGENCE). In the COP algorithm shown
in Algorithm 1, which solves either problem (7) or (8), the NLL de-
creases iteratively until convergence.

Theorems 3 and 4 provide important guarantees for the proposed
COP method.

6. SPEEDUP IN HIGH DIMENSIONS
According to Proposition 3 and Theorem 3, a key step in the

COP method is solving the Rayleigh quotient problem (12) if we
want to adopt the analytical solution for problem (7) or use it to
initialize the estimator in problem (8). Both Eq. (9) and problem
(12) require that (a∗)TSa∗ > 0 for the optimal a∗ or equivalently
a∗ lies in the range space of S. We can rewrite S as S = XTX
if we assume that the data samples are normalized to have zero
sample mean and based on this reformulation, we can see that the
range space of S is spanned by X, implying that a∗ lies in the row
space of X. Hence we can represent a as a = XTb where b ∈ Rn
contains the spanning coefficients. Accordingly problem (12) can
be reformulated as

b∗ = argmax
b

bT
(
XM−1

k XT
)
b

bT (XSXT )b
. (15)

Problem (15) is still a Rayleigh quotient problem which can be
solved by the power method. One advantage to solve problem (15)
instead of problem (12) is that the size of matrices in the gener-
alized eigen-decomposition problem (15) is n × n which is much
smaller than that of problem (12) under the high-dimensional set-
ting where n � p, leading to a much more efficient implementa-
tion and a significant speedup. Moreover, when solving problem
(15), we only need to store the data matrix X instead of the sample
covariance matrix S as in problem (12), which can largely reduce
the storage requirement. For the case where n > p, we still solve
problem (12) since in this situation the null space of S is empty
with a large probability.

7. COMPLEXITY ANALYSIS
In this section, we discuss the complexity of the proposed COP

method in Algorithm 1 and compare with existing approaches.
In each iteration of Algorithm 1, the matrix inverse M−1

k+1 is
needed in step 6. Since Mk+1 = Mk +u∗Tk+1u

∗
k+1 where u∗k+1 is

a vector, we can efficiently compute M−1
k+1 as

M−1
k+1 = M−1

k −
M−1

k u∗k+1u
∗T
k+1M

−1
k

1 + u∗Tk+1M
−1
k u∗k+1

,



which only needsO(p2) operations because M−1
k has already been

stored during the previous iteration. Step 3 in Algorithm 1 when we
consider problem (7) needs to solve problem (12) or (15), whose
complexity is O(min(p2, n2)). When solving problem (8), the
complexity of the GPG method is no more than O(p2), and when
we adopt the optimal solution of problem (7) as the initialization,
the GPG method will converge fast in considerably few iterations.
Moreover, updating the diagonal matrix Pk in each iteration costs
O(p2). In a word, the overall time complexity of the COP algo-
rithm is O(rp2) where r is the pre-defined rank satisfying r � p.
Moreover, the storage requirement for the the two matrices (i.e., L
and P) in the COP algorithm is a linear function w.r.t. p, since we
only need to keep the diagonal elements in Pk and the component
vectors {u∗1, · · · ,u∗k}.

All the sparse inverse covariance estimation methods including
[4, 6, 11, 24, 25, 16] use the first-order or second-order proxi-
mal methods to solve problem (2) where computing the inverse
of a p × p matrix Θ−1

k is needed and costs O(p3). So the com-
putational complexity of the COP method is lower than those of
the aforementioned approaches. For the LGGM methods [5, 22,
15], which assume the inverse covariance has a sparse minus low-
rank structure, they need to compute the inverse of p × p matrices
with O(p3) cost and also need additional O(p3) operations for the
eigen-decomposition to update the low-rank part, making it have
higher complexity than the proposed COP method. Moreover, as
discussed before, the storage complexity of the COP algorithm is
O(p) but those of the above approaches depend on the number of
non-zero entries in Θ, which could be O(p2) in the worst case.

8. EXPERIMENTS
In this section, we conduct experiments on both synthetic and

real-world datasets to evaluate the proposed COP method and the
`1-regularized COP method (COP-`1).

8.1 Experimental Settings
We compare with a number of state-of-the-art methods for the

inverse covariance estimation problem, including the QUIC [16],
Big-QUIC [17], BCDIC [26] and QUIC&Dirty [15] methods.1 Am-
ong those methods, the QUIC, Big-QUIC and BCDIC methods are
the state-of-the-art sparse inverse covariance estimation methods,
while the QUIC&Dirty method is currently the most efficient algo-
rithm for the LGGM problem. The implementations for the QUIC,
Big-QUIC, BCDIC and QUIC&Dirty methods adopt the recom-
mended settings as provided in their works and the Big-QUIC and
BCDIC methods are parallelized with multiple cores. All the ex-
periments are performed on a machine with dual 6-core Intel Xeon
X5650 2.66GHz processor and 32GB RAM.

In the experiments, we split the data into a training set contain-
ing 90% of the samples and a test set with the rest samples. We
use Strain to denote the sample covariance matrix on the train-
ing set and Stest as the sample covariance matrix on the test set.
All the data are normalized such that the diagonal elements in both
Strain and Stest are all ones. By following [16, 17, 26], we choose
the regularization parameter ρ in problem (2) for the QUIC, Big-
QUIC and BCDIC methods such that the estimated Θ̂ contains ap-
proximately 10p non-zero elements. For the QUIC&Dirty method,
we set its regularization parameter ρ1 for the sparse part to be ρ
in problem (2) and choose another regularization parameter ρ2 for

1The codes for the QUIC, Big-QUIC and QUIC&Dirty methods
can be downloaded from http://www.stat.ucdavis.edu/~chohsieh/
and that for the BCDIC method can be obtained at http://www.
javierturek.com/software/.

the low-rank part from {0.1, 1, 10}. For the COP-`1 method, we
choose the best γ from the candidate set {10−5, 10−4, · · · , 10−1}.

8.2 Experiments on Synthetic Data
In this section, we conduct experiments on synthetic data to test

the performance of the proposed COP and COP-`1 methods.

8.2.1 Results on Small-Scale Data
We first generate a dataset of small scale to test the correctness

of the theoretical results presented in Section 5. In order to do this,
we generate a matrix A ∈ Rr

∗×p, where r∗ = 20 and p = 100.
Each entry in A is sampled from the standard normal distribution
N (0, 1). Then we generate the sample covariance matrix S∗ as
(S∗)−1 = ATA + I. We estimate Θ̂ by solving problem (1)
and compare the estimated Θ̂ and (S∗)−1 to see whether they are
exactly the same. In order to see the learned L, we suppose that the
diagonal part P is known and set to be the ground truth, i.e., the
identity matrix I.

Fig. 1 shows detailed results of the COP method. Fig. 1(a) de-
picts the change of the NLL values when increasing the the number
of components or equivalently the iterations. Since we are aware
of the ground truth of the inverse covariance, we can calculate the
ground truth of the NLL value which is illustrated by the red dashed
line. We see that the NLL of the COP algorithm decreases in al-
most a linear rate, and when the rank or equivalently the number
of components reaches 20, which is the ground truth for the rank,
the COP method exactly recovers the ground truth of the inverse
covariance and the corresponding NLL value is equal to the ground
truth. Hence, the COP algorithm stops at the 21st iteration by per-
fectly recovering the ground truth of the inverse covariance. Fig.
1(b) plots change of the λ∗ against the rank. As expected, the value
of λ∗ decreases when increasing the rank and when the number of
iterations reaches 21, λ∗ becomes 1, which implies that Eq. (9)
is no longer satisfied, leading to the termination of the COP algo-
rithm. These observed results well match the theoretical results in
Section 5.

8.2.2 Results on Large-Scale Data
Similar to the previous section, we generate a matrix A ∈ Rr

∗×p,
where r∗ = 100 and each entry in A is sampled from the stan-
dard normal distribution N (0, 1). The true covariance S∗ is gen-
erated in the same way as (S∗)−1 = ATA + I. In this case, we
generate n = 1000 samples, which are stored in the data matrix
X ∈ Rn×p, from N (0,S∗). We vary p from 5, 000 to 25, 000 at
an interval of 5, 000 to evaluate the performance of all the meth-
ods. Since the sparse inverse covariance estimation methods in-
cluding the QUIC, Big-QUIC and BCDIC methods solve problem
(2) and the QUIC&Dirty method solve the LGGM problem, the
comparison among them is not straightforward. In order to make
fair evaluations, we compare the running time of different methods
when they achieve the same or comparable NLL on the test dataset
and the method with the lowest running time is the most efficient
one. Moreover, we compare the COP and COP-`1 methods with the
sparse inverse covariance estimation methods and the QUIC&Dirty
method separately.

Table 1 shows the results by comparing the proposed COP and
COP-`1 methods with the sparse inverse covariance estimation met-
hods. In Table 1, there are seven groups of columns. The first
group of columns denotes different settings for p. The second
group shows the value of the regularization parameter ρ in prob-
lem (2), the number of non-zero (NNZ) entries in the estimated Θ̂
which is around 10p by following experimental settings in the orig-
inal works, and the NLL on the test data denoted by NLLte for the
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Figure 1: The detailed results of the COP method on a small-scale synthetic data.

Table 1: Comparison of the running time (in seconds) between the sparse inverse covariance estimation methods, i.e., QUIC, Big-
QUIC, BCDIC, and the proposed methods, i.e., COP and COP-`1, on synthetic data. The detailed settings for various methods are
reported, including the setting of ρ, the number of non-zeros (NNZ), the rank r, the parameter γ, and the NLL on the test data
denoted by NLLte.

Data ρ NNZ NLLte QUIC Big-QUIC BCDIC r NLLte COP r γ NLLte COP-`1
p = 5, 000 0.218 51,296 4967.5 79.8 64.9 50.7 11 4965.3 15.0 14 10−5 4965.9 26.1
p = 10, 000 0.231 103,422 9959.3 271.8 234.8 191.4 16 9959.2 87.9 21 10−5 9959.4 136.7
p = 15, 000 0.239 153,454 14966.4 798.0 622.7 404.3 16 14966.0 200.9 20 10−5 14966.2 312.5
p = 20, 000 0.244 207,306 19970.1 1821.6 1349.0 696.3 17 19969.2 376.8 22 10−5 19968.9 584.3
p = 25, 000 0.248 258,850 24980.3 4709.2 3828.2 1087.3 12 24980.1 401.0 15 10−5 24980.5 560.8

Table 2: Comparison of the running time (in seconds) between the QUIC&Dirty method and the proposed methods, i.e. COP and
COP-`1, on synthetic data. The detailed settings for various methods are reported, including the setting of ρ1 and ρ2, the rank r, the
parameter γ, and the NLL on the test data denoted by NLLte. ‘-’ indicates that the QUIC&Dirty method does not return a result
after running over 5 hours for all choices of ρ2 ∈ {0.1, 1, 10}.

Data ρ1 ρ2 NLLte QUIC&Dirty r NLLte COP r γ NLLte COP-`1
p = 5, 000 0.218 1 4953.8 881.9 16 4951.9 23.4 21 10−5 4942.3 40.3
p = 10, 000 0.231 1 9945.8 2795.0 24 9945.1 132.3 30 10−5 9946.1 197.5
p = 15, 000 0.239 1 14941.3 8527.9 33 14940.9 413.7 41 10−5 14941.5 645.6
p = 20, 000 0.244 - - - 50 19910.6 1121.1 66 10−5 19911.7 1757.7
p = 25, 000 0.248 - - - 50 24918.0 1423.0 68 10−5 24917.6 2202.9

QUIC, Big-QUIC and BCDIC methods. Since all the three meth-
ods solve the same problem (i.e., problem (2)), their NNZ’s and
NLLte’s are nearly the same and thus we only report the results
obtained from the BCDIC method. The third group reports the run-
ning time for the QUIC, Big-QUIC and BCDIC methods. The forth
group of columns shows the learned rank r and the NLLte of the
COP method, and the fifth group reports its running time. Similarly,
the last two columns show the results for the COP-`1 method. From
the results, the COP and COP-`1 methods usually needs 10 to 20
components to achieve comparable NLLte with those of the QUIC,
Big-QUIC and BCDIC methods on all the synthetic datasets and
the COP and COP-`1 methods are always faster than other meth-
ods under all the settings.

The comparison results among the QUIC&Dirty, COP and COP-
`1 methods are recorded in Table 2. Table 2 has a similar format to
Table 1 and it shows all the detailed settings and the running time
of the three methods. When p is lower than 20, 000, the COP and
COP-`1 methods are much more efficient than the QUIC&Dirty
method when they achieve similar NLLte. When p becomes larger,
the QUIC&Dirty method cannot provide the estimation in reason-
able time (i.e., 5 hours) and hence it can only handle medium-scale
datasets. For the COP and COP-`1 methods, we try larger ranks,
i.e., 50, and they still obtain lower NLLte in reasonable time.

By comparing Table 1 and Table 2, we find that the QUIC&Dirty
method has slightly better testing NLL values than the sparse in-
verse covariance estimation methods when their regularization pa-
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Figure 2: Detailed results on synthetic data when p = 5, 000.

rameters, which control the sparsity, are set to the same value. This
observation reveals that considering both the low-rank and sparse
structure can fit the data better than purely sparse inverse covari-
ance in these synthetic datasets. However, training the QUIC&Dirty
method is much more computational expensive and hence it can
hardly process large-scale data as shown in Table 2.

In Tables 1 and 2, the COP-`1 method does not perform better
than the non-regularized one, and it generally needs more ranks and
running time to obtain comparable NLLte with the COP method.
This is probably because under the synthetic setting, the ground
truth does not contain sparse components.

In addition, we provide more details for the COP method in Fig.
2 which plots iterative results of the COP method on synthetic data
with p = 5, 000. We set the total number of ranks to be 101 in
this case. Fig. 2(a) plots the change of the NLL on the training
data w.r.t. the number of iterations. Again, we find that the NLL
on the training set decreases in a linear rate against the number of
iterations. Fig. 2(b) shows the value of λ∗ in each iteration and
we see that λ∗ becomes smaller iteratively while it is always larger
than 1 even at the 101st iteration, implying that the algorithm can
further proceed. Note that in this situation, the ground truth of the
rank is 100 but the COP algorithm does not terminate at the 101st
iteration. This is reasonable since under this setting where n � p,
the sampling bias exists in the training data and hence the estimated
components are not exactly the true components.

8.3 Experiments on Real-World Datasets
In this section, we conduct experiments on large-scale real-world

datasets. We use four datasets from the Gridded Climate Data2 and
one stock dataset collected from the Yahoo finance3, which are also
studied in [14]. The four climate datasets are: (1) the Northern
Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent
(Snow), which records the weekly snow cover in northern hemi-
sphere on 1.0 latitude × 1.0 longitude grids from January, 1971
to December, 1995. Each grid is treated as an attribute. By re-

2http://www.esrl.noaa.gov/psd/data/gridded/
3http://finance.yahoo.com/

moving invalid observations, the number of attributes p is 9, 148,
and the number of samples n is 297; (2) the NCEP/NCAR Re-
analysis air data (Air), which contains daily air temperature on the
earth with 2.5 latitude × 2.5 longitude global grids. The number
of attributes p is 10, 512 and by following [14] we use n = 1460
records in year 2001; (3) the CPC Unified Gauge-Based Analysis
of Daily Precipitation over CONUS (Precip), which focuses on the
daily precipitation in USA. The valid data contains p = 13, 610
attributes and we use n = 3652 observations from year 1997 to
year 2006; (4) the NOAA’s Outgoing Longwave Radiation (OLR)
Daily Climate Data Record, which provides the OLR records on
the earth. In this dataset, p equals 21, 720 and n is equal to 2903.
For the Stock dataset, we collect p = 21, 602 stocks with daily
closing price recorded in latest 300 days before Dec. 31, 2015.

Table 3 reports experimental results for the QUIC, Big-QUIC,
BCDIC and QUIC&Dirty methods on all the datasets, while Table
4 gives the results of the COP and COP-`1 methods. In Table 3, the
QUIC, Big-QUIC and BCDIC methods, whose Θ’s have about 10p
non-zero entries, have much larger NLL’s on the test data especially
for the Snow, Air, and OLR datasets when comparing with the COP
and COP-`1 methods in Table 4. The QUIC&Dirty method has
better NLLte than the sparse inverse covariance estimation meth-
ods on the Snow and Air datasets, but it fails to learn the model
on the larger Precip, OLR and Stock datasets in reasonable time.
Under all the settings, we set the rank of the COP method to be 5,
which is good enough to obtain lower NLL’s on all the test data, and
we choose the model parameters for the COP-`1 method to obtain
similar testing NLL’s to the COP method. According to Table 4,
in most settings, the COP method not only has better NLLte than
the COP-`1 method but also performs faster. The exceptions are
that on the OLR dataset, the COP-`1 method has better predictive
performance and that it is slightly faster on the Stock dataset.

Moreover, we provide some additional results for the QUIC, Big-
QUIC and BCDIC methods on the Snow, Air, OLR and Stock
datasets in Table 5, where their regularization parameters ρ’s are
selected such that the resulting estimators can achieve comparable



Table 3: Comparison of the running time (in seconds) for the QUIC, Big-QUIC, BCDIC and QUIC&Dirty methods on real-world
data. The NNZ’s for the QUIC, Big-QUIC and BCDIC methods are around 10p by choosing their regularization parameter ρ. ‘-’
indicates that the corresponding methods do not return a result after running over 5 hours for all choices of ρ2 ∈ {0.1, 1, 10}.

Data p ρ NNZ NLLte QUIC Big-QUIC BCDIC ρ1 ρ2 NLLte QUIC&Dirty
Snow 9, 148 0.982 108,246 10639.1 282.3 243.5 72.0 0.982 10 10439.0 3174.2
Air 10, 512 0.975 105,636 12250.3 660.5 539.4 129.1 0.975 10 11965.7 7060.8

Precip 13, 610 0.820 132,200 13992.1 1680.9 1213.6 483.0 0.820 - - -
OLR 21, 720 0.988 223,936 25647.9 3650.2 2989.0 544.2 0.988 - - -
Stock 21, 602 0.985 221,053 24814.7 3990.6 3212.7 634.1 0.985 - - -

Table 4: Comparison of the running time (in seconds) for the COP and COP-`1 methods on real-world data.
Data p r NLLte COP r γ NLLte COP-`1
Snow 9, 148 5 9162.3 20.7 6 10−5 9167.9 30.2
Air 10, 512 5 10635.2 28.2 6 10−5 10651.6 41.5

Precip 13, 610 5 13901.5 50.6 6 10−5 13921.9 65.7
OLR 21, 720 5 21754.0 125.1 5 10−4 21753.9 148.5
Stock 21, 602 5 21632.6 122.8 4 10−4 21652.1 120.3

Table 5: Comparison of the running time (in seconds) for the QUIC, Big-QUIC and BCDIC methods on the Snow, Air, OLR and
Stock datasets when decreasing ρ to obtain more non-zero elements.

Data ρ NNZ NLLte QUIC Big-QUIC BCDIC
Snow 0.950 568,402 (≈ 50p) 9404.0 1604.3 1253.6 429.8
Air 0.910 406,888 (≈ 40p) 10646.7 2117.0 1542.3 594.9

OLR 0.950 940,100 (≈ 45p) 24180.9 15557.2 13725.0 3248.2
Stock 0.950 928,147 (≈ 45p) 23990.6 17209.1 14632.4 3785.5

NLL’s on the test data with those of the COP and COP-`1 methods.4

Table 5 does not include the Precip data, because the result reported
in Table 3 is already comparable to those of the COP and COP-`1
methods. Under this setting, the QUIC&Dirty method still can not
return any result in 5 hours and so it is not included. From the re-
sults, we can see that in order to achieve lower NLL’s on the test
set of the four datasets, the numbers of the non-zero entries in their
estimators become larger and as a consequence, the running time
of the three methods significantly increases, which again demon-
strates the efficiency of the proposed COP and COP-`1 methods.

9. CONCLUSION
In this paper, we proposed an efficient component pursuit (COP)

method and its `1-regularized variant for the large-scale inverse co-
variance estimation problem by assuming that the inverse covari-
ance is a combination of a low-rank matrix and a diagonal matrix.
Both theoretical analysis and empirical evaluations demonstrate the
effectiveness and efficiency of the proposed methods when com-
pared with the state-of-the-art methods.

As a future direction, we are interested in applying the COP
methods to more large-scale applications, e.g., the gene expression
data, where there exists inherent low-rank structure among the fea-
tures. Another future direction is to extend the COP method to deal
with more complex structure in the inverse covariance estimation
problem, e.g., the low-rank plus block diagonal structure, since in
many applications such as financial analysis, the group information
among features is available as a priori information.

4ρ with a value smaller than 0.95 on the Snow, OLR and Stock
datasets will lead to memory exceeded problem for the three meth-
ods and hence we just set ρ to be 0.95.
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APPENDIX
A. PROOF OF THEOREM 1
Proof. For problem (7), the derivative and the Hessian of f(u) can
be calculated as

∇uf = −
2M−1

k u

1 + uTM−1
k u

+ 2Su (16)

∇2
uf = −

2(1 + uTM−1
k u)M−1

k − 4M−1
k uuTM−1

k

(1 + uTkM−1
k uk)2

+ 2S

=
4M−1

k uuTM−1
k

(1 + uTM−1
k u)2

+ 2S− 2

1 + uTM−1
k u

M−1
k . (17)

It is easy to see that 2

1+uT M−1
k

u
< 2, since M−1

k is positive-

definite and uTM−1
k u > 0 for any vector u. If S � M−1

k , it
is easy to see that the hessian ∇2

uf � 0 and f(u) is convex w.r.t.
u. However, under the high-dimensional case where S is posi-
tive semidefinite but not positive definite due to n � p, 2S −

2

1+uT M−1
k

u
M−1

k is not positive semi-definite and it contains at

least p − n negative eigenvalues. Moreover, the first term in the
right-hand side of Eq. (17) is only a rank-one matrix. So ∇2

uf is
not positive semidefinite and hence f(u) is a non-convex function
w.r.t. u. 2

B. PROOF OF THEOREM 2
Proof. The proof of Theorem 2 follows directly from the Proposi-
tion 4 in [1]. 2



C. PROOF OF PROPOSITION 1
Proof. By considering the difference betweenL(Mk) andL(Mk+
uuT ), we have

L(Mk)− L(Mk + uuT )

=− log |Mk|+ 〈S,Mk〉+ log |Mk + α2aaT | − 〈S,Mk + α2aaT 〉

= log
(
1 + α2aTM−1

k a
)
− α2aTSa.

Define l(α,a) = log
(
1 + α2aTM−1

k a
)
−α2aTSa. We inves-

tigate whether there exists some pair (α,a) such that

max
α,a

l(α,a) > 0.

When a is fixed, we define c1 = aTM−1
k a and c2 = aTSa, where

obviously c1 > 0 and c2 ≥ 0 since M−1
k is positive definite and

S is positive semidefinite. Then l(α,a) can be formulated as a
function w.r.t. α as

l(α) = log
(
1 + c1α

2)− c2α2. (18)

The convexity and the extreme value of l(α) depends on the two
scalars c1 and c2. Fig. 3(a) plots some examples of the function
l(α) when adopting different values for c1 and c2. By setting ∂l

∂α
=

0 we obtain the maximizer of l(α) as

α =

{ √
1
c2
− 1

c1
, if c1 > c2,

0, otherwise.
. (19)

From Eq. (19), if c1 > c2, plugging Eq. (19) into l(α,a) gives

max
u
L(Mk)− L(Mk + uuT )

=max
a

log
aTM−1

k a

aTSa
+

aTSa

aTM−1
k a
− 1.

By defining c = aT M−1
k

a

aT Sa
, we have

max
u
L(Mk)− L(Mk + uuT ) = max

c
log c+

1

c
− 1, (20)

where q(c) = log c+ 1
c
−1. Then we get ∂q

∂c
= 1

c
− 1
c2

. It is easy to
see that the function q(c) is monotonically increasing when c > 1,
because ∂q

∂c
> 0. Moreover, since q(1) = 0, we have q(c) > 0 for

any c > 1. Fig. 3(b) plots the curve of q(c) for c > 1. Therefore,
we can get that L(Mk + uuT ) < L(Mk).

When c1 ≤ c2, based on Eq. (19), we have u = αa = 0 and
hence L(Mk)−L(Mk+uuT ) = 0, which implies that adding an
additional rank-one component is not helpful to decrease the NLL.
If this happens, the greedy algorithm stops. 2

D. PROOF OF PROPOSITION 2
Proof. When condition (9) is satisfied, combing Eqs. (10), (19) and
(20), we have

L(Mk)− L(Mk + uuT ) = q(c) = log c+
1

c
− 1.

Based on the proof of Proposition 1, q(c) is a monotonically in-
creasing function w.r.t. c for c > 1. 2

E. PROOF OF PROPOSITION 3
Proof. According to Eq. (20), the decrease in the NLL becomes
faster if c is larger, since q(c) is monotonically increasing when
c > 1. Therefore, based on the analysis on the Rayleigh quotient
problem (12), we reach the conclusion. 2
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Figure 3: Illustrations of two functions.

F. PROOF OF THEOREM 3
Proof. Based on propositions 1-3, we only need to check whether
u∗ = α∗a∗ is a local optimum of problem (7). Since ∇f(u∗) =
0 and ∇2

uf(u
∗) � 0, u∗ is a local optimum and we reach the

conclusion. 2

G. PROOF OF THEOREM 4
Proof. Proposition 1 implies that adding a rank-one component
will lead to a lower NLL in the current iteration, if the component
vector a satisfies Eq. (9). Moreover, after adding a rank-one com-
ponent, updating the diagonal part P solves a convex function w.r.t.
P, and therefore the NLL will not increase after the updating. So
the NLL is guaranteed to decrease during iterations in Algorithm
1 until there is no vector satisfying Eq. (9) and then the algorithm
converges. 2


